IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i12p4687-4699.html
   My bibliography  Save this article

A new memetic algorithm approach for the price based unit commitment problem

Author

Listed:
  • Dimitroulas, Dionisios K.
  • Georgilakis, Pavlos S.

Abstract

Unit commitment (UC) is a very important optimization task, which plays a major role in the daily operation planning of electric power systems that is why UC is a core research topic attracting a lot of research efforts. An innovative method based on an advanced memetic algorithm (MA) for the solution of price based unit commitment (PBUC) problem is proposed. The main contributions of this paper are: (i) an innovative two-level tournament selection, (ii) a new multiple window crossover, (iii) a novel window in window mutation operator, (iv) an innovative local search scheme called elite mutation, (v) new population initialization algorithm that is specific to PBUC problem, and (vi) new PBUC test systems including ramp up and ramp down constraints so as to provide new PBUC benchmarks for future research. The innovative two-level tournament selection mechanism contributes to the reduction of the required CPU time. The method has been applied to systems of up to 110units and the results show that the proposed memetic algorithm is superior to other methods since it finds the optimal solution with a high success rate and within a reasonable execution time.

Suggested Citation

  • Dimitroulas, Dionisios K. & Georgilakis, Pavlos S., 2011. "A new memetic algorithm approach for the price based unit commitment problem," Applied Energy, Elsevier, vol. 88(12), pages 4687-4699.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4687-4699
    DOI: 10.1016/j.apenergy.2011.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911003795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Georgopoulou, Chariklia A. & Giannakoglou, Kyriakos C., 2009. "Two-level, two-objective evolutionary algorithms for solving unit commitment problems," Applied Energy, Elsevier, vol. 86(7-8), pages 1229-1239, July.
    2. Niknam, Taher & Khodaei, Amin & Fallahi, Farhad, 2009. "A new decomposition approach for the thermal unit commitment problem," Applied Energy, Elsevier, vol. 86(9), pages 1667-1674, September.
    3. Thorin, Eva & Brand, Heike & Weber, Christoph, 2005. "Long-term optimization of cogeneration systems in a competitive market environment," Applied Energy, Elsevier, vol. 81(2), pages 152-169, June.
    4. Delarue, Erik & D'haeseleer, William, 2008. "Adaptive mixed-integer programming unit commitment strategy for determining the value of forecasting," Applied Energy, Elsevier, vol. 85(4), pages 171-181, April.
    5. Georgopoulou, Chariklia A. & Giannakoglou, Kyriakos C., 2010. "Metamodel-assisted evolutionary algorithms for the unit commitment problem with probabilistic outages," Applied Energy, Elsevier, vol. 87(5), pages 1782-1792, May.
    6. Voorspools, Kris R. & D'haeseleer, William D., 2003. "Long-term Unit Commitment optimisation for large power systems: unit decommitment versus advanced priority listing," Applied Energy, Elsevier, vol. 76(1-3), pages 157-167, September.
    7. Hawkes, A.D. & Leach, M.A., 2009. "Modelling high level system design and unit commitment for a microgrid," Applied Energy, Elsevier, vol. 86(7-8), pages 1253-1265, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le Chi Kien & Thanh Long Duong & Van-Duc Phan & Thang Trung Nguyen, 2020. "Maximizing Total Profit of Thermal Generation Units in Competitive Electric Market by Using a Proposed Particle Swarm Optimization," Sustainability, MDPI, vol. 12(3), pages 1-35, February.
    2. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2015. "Value of flexible electric vehicles in providing spinning reserve services," Applied Energy, Elsevier, vol. 157(C), pages 60-74.
    3. Anand, Himanshu & Narang, Nitin & Dhillon, J.S., 2018. "Profit based unit commitment using hybrid optimization technique," Energy, Elsevier, vol. 148(C), pages 701-715.
    4. Razeghi, Ghazal & Brouwer, Jack & Samuelsen, Scott, 2016. "A spatially and temporally resolved model of the electricity grid – Economic vs environmental dispatch," Applied Energy, Elsevier, vol. 178(C), pages 540-556.
    5. Thanh Long Duong & Phuong Duy Nguyen & Van-Duc Phan & Dieu Ngoc Vo & Thang Trung Nguyen, 2019. "Optimal Load Dispatch in Competitive Electricity Market by Using Different Models of Hopfield Lagrange Network," Energies, MDPI, vol. 12(15), pages 1-24, July.
    6. Abdi, Hamdi, 2021. "Profit-based unit commitment problem: A review of models, methods, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Sergey Voronin & Jarmo Partanen, 2013. "Price Forecasting in the Day-Ahead Energy Market by an Iterative Method with Separate Normal Price and Price Spike Frameworks," Energies, MDPI, vol. 6(11), pages 1-24, November.
    8. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    9. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    10. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    2. Fernández-Blanco, Ricardo & Arroyo, José M. & Alguacil, Natalia, 2014. "Consumer payment minimization under uniform pricing: A mixed-integer linear programming approach," Applied Energy, Elsevier, vol. 114(C), pages 676-686.
    3. Aghaei, J. & Shayanfar, H.A. & Amjady, N., 2009. "Joint market clearing in a stochastic framework considering power system security," Applied Energy, Elsevier, vol. 86(9), pages 1675-1682, September.
    4. Yang, Linfeng & Zhang, Chen & Jian, Jinbao & Meng, Ke & Xu, Yan & Dong, Zhaoyang, 2017. "A novel projected two-binary-variable formulation for unit commitment in power systems," Applied Energy, Elsevier, vol. 187(C), pages 732-745.
    5. Niknam, Taher & Khodaei, Amin & Fallahi, Farhad, 2009. "A new decomposition approach for the thermal unit commitment problem," Applied Energy, Elsevier, vol. 86(9), pages 1667-1674, September.
    6. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    7. Lee, Yi-Shian & Tong, Lee-Ing, 2012. "Forecasting nonlinear time series of energy consumption using a hybrid dynamic model," Applied Energy, Elsevier, vol. 94(C), pages 251-256.
    8. Goudarzi, Arman & Swanson, Andrew G. & Van Coller, John & Siano, Pierluigi, 2017. "Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators," Applied Energy, Elsevier, vol. 189(C), pages 667-696.
    9. Mazzola, Simone & Astolfi, Marco & Macchi, Ennio, 2015. "A detailed model for the optimal management of a multigood microgrid," Applied Energy, Elsevier, vol. 154(C), pages 862-873.
    10. Vasilios A. Tsalavoutis & Constantinos G. Vrionis & Athanasios I. Tolis, 2021. "Optimizing a unit commitment problem using an evolutionary algorithm and a plurality of priority lists," Operational Research, Springer, vol. 21(1), pages 1-54, March.
    11. Hamdi Abdi, 2023. "A Survey of Combined Heat and Power-Based Unit Commitment Problem: Optimization Algorithms, Case Studies, Challenges, and Future Directions," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    12. Khodr, H.M. & El Halabi, N. & García-Gracia, M., 2012. "Intelligent renewable microgrid scheduling controlled by a virtual power producer: A laboratory experience," Renewable Energy, Elsevier, vol. 48(C), pages 269-275.
    13. Amjady, Nima & Keynia, Farshid, 2010. "A new spinning reserve requirement forecast method for deregulated electricity markets," Applied Energy, Elsevier, vol. 87(6), pages 1870-1879, June.
    14. Milan, Christian & Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman, 2015. "Modeling of non-linear CHP efficiency curves in distributed energy systems," Applied Energy, Elsevier, vol. 148(C), pages 334-347.
    15. Biéron, M. & Le Dréau, J. & Haas, B., 2023. "Assessment of the marginal technologies reacting to demand response events: A French case-study," Energy, Elsevier, vol. 275(C).
    16. Georgopoulou, Chariklia A. & Giannakoglou, Kyriakos C., 2010. "Metamodel-assisted evolutionary algorithms for the unit commitment problem with probabilistic outages," Applied Energy, Elsevier, vol. 87(5), pages 1782-1792, May.
    17. Jang-yeop Kim & Kyung Sup Kim, 2018. "Integrated Model of Economic Generation System Expansion Plan for the Stable Operation of a Power Plant and the Response of Future Electricity Power Demand," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
    18. Hu, Ming-Che & Lu, Su-Ying & Chen, Yen-Haw, 2016. "Stochastic programming and market equilibrium analysis of microgrids energy management systems," Energy, Elsevier, vol. 113(C), pages 662-670.
    19. Rong, Aiying & Hakonen, Henri & Lahdelma, Risto, 2008. "A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 190(3), pages 741-755, November.
    20. Kong, Haining & Qi, Ershi & Li, Hui & Li, Gang & Zhang, Xing, 2010. "An MILP model for optimization of byproduct gases in the integrated iron and steel plant," Applied Energy, Elsevier, vol. 87(7), pages 2156-2163, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4687-4699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.