IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2778-d790755.html
   My bibliography  Save this article

Synthetic Theft Attacks and Long Short Term Memory-Based Preprocessing for Electricity Theft Detection Using Gated Recurrent Unit

Author

Listed:
  • Pamir

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Nadeem Javaid

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan
    School of Computer Science, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Saher Javaid

    (Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City 923-1292, Japan)

  • Muhammad Asif

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Muhammad Umar Javed

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Adamu Sani Yahaya

    (Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan)

  • Sheraz Aslam

    (Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol 3036, Cyprus)

Abstract

Electricity theft is one of the challenging problems in smart grids. The power utilities around the globe face huge economic loss due to ET. The traditional electricity theft detection (ETD) models confront several challenges, such as highly imbalance distribution of electricity consumption data, curse of dimensionality and inevitable effects of non-malicious factors. To cope with the aforementioned concerns, this paper presents a novel ETD strategy for smart grids based on theft attacks, long short-term memory (LSTM) and gated recurrent unit (GRU) called TLGRU. It includes three subunits: (1) synthetic theft attacks based data balancing, (2) LSTM based feature extraction, and (3) GRU based theft classification. GRU is used for drift identification. It stores and extracts the long-term dependency in the power consumption data. It is beneficial for drift identification. In this way, a minimum false positive rate (FPR) is obtained. Moreover, dropout regularization and Adam optimizer are added in GRU for tackling overfitting and trapping model in the local minima, respectively. The proposed TLGRU model uses the realistic EC profiles of the Chinese power utility state grid corporation of China for analysis and to solve the ETD problem. From the simulation results, it is exhibited that 1% FPR, 97.96% precision, 91.56% accuracy, and 91.68% area under curve for ETD are obtained by the proposed model. The proposed model outperforms the existing models in terms of ETD.

Suggested Citation

  • Pamir & Nadeem Javaid & Saher Javaid & Muhammad Asif & Muhammad Umar Javed & Adamu Sani Yahaya & Sheraz Aslam, 2022. "Synthetic Theft Attacks and Long Short Term Memory-Based Preprocessing for Electricity Theft Detection Using Gated Recurrent Unit," Energies, MDPI, vol. 15(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2778-:d:790755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2778/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2778/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.
    2. Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
    3. Zhengwei Qu & Hongwen Li & Yunjing Wang & Jiaxi Zhang & Ahmed Abu-Siada & Yunxiao Yao, 2020. "Detection of Electricity Theft Behavior Based on Improved Synthetic Minority Oversampling Technique and Random Forest Classifier," Energies, MDPI, vol. 13(8), pages 1-20, April.
    4. Zeeshan Aslam & Nadeem Javaid & Ashfaq Ahmad & Abrar Ahmed & Sardar Muhammad Gulfam, 2020. "A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-24, October.
    5. Giovanni Micheli & Emiliano Soda & Maria Teresa Vespucci & Marco Gobbi & Alessandro Bertani, 2019. "Big data analytics: an aid to detection of non-technical losses in power utilities," Computational Management Science, Springer, vol. 16(1), pages 329-343, February.
    6. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    7. Xiaoquan Lu & Yu Zhou & Zhongdong Wang & Yongxian Yi & Longji Feng & Fei Wang, 2019. "Knowledge Embedded Semi-Supervised Deep Learning for Detecting Non-Technical Losses in the Smart Grid," Energies, MDPI, vol. 12(18), pages 1-18, September.
    8. Yong-gang Zhang & Jun Tang & Zheng-ying He & Junkun Tan & Chao Li, 2021. "A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 783-813, January.
    9. Haiqing Liu & Zhiqiao Li & Yuancheng Li, 2020. "Noise Reduction Power Stealing Detection Model Based on Self-Balanced Data Set," Energies, MDPI, vol. 13(7), pages 1-16, April.
    10. Razavi, Rouzbeh & Gharipour, Amin & Fleury, Martin & Akpan, Ikpe Justice, 2019. "A practical feature-engineering framework for electricity theft detection in smart grids," Applied Energy, Elsevier, vol. 238(C), pages 481-494.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Xia & Yunpeng Gao & Yanqing Zhu & Dexi Gu & Jiangzhao Wang, 2022. "An Efficient Method Combined Data-Driven for Detecting Electricity Theft with Stacking Structure Based on Grey Relation Analysis," Energies, MDPI, vol. 15(19), pages 1-25, October.
    2. Benish Kabir & Umar Qasim & Nadeem Javaid & Abdulaziz Aldegheishem & Nabil Alrajeh & Emad A. Mohammed, 2022. "Detecting Nontechnical Losses in Smart Meters Using a MLP-GRU Deep Model and Augmenting Data via Theft Attacks," Sustainability, MDPI, vol. 14(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuesong Tian & Yuping Zou & Xin Wang & Minglang Tseng & Hua Li & Huijuan Zhang, 2022. "Improving the Efficiency and Sustainability of Intelligent Electricity Inspection: IMFO-ELM Algorithm for Load Forecasting," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    2. Benish Kabir & Umar Qasim & Nadeem Javaid & Abdulaziz Aldegheishem & Nabil Alrajeh & Emad A. Mohammed, 2022. "Detecting Nontechnical Losses in Smart Meters Using a MLP-GRU Deep Model and Augmenting Data via Theft Attacks," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    3. Rui Xia & Yunpeng Gao & Yanqing Zhu & Dexi Gu & Jiangzhao Wang, 2022. "An Efficient Method Combined Data-Driven for Detecting Electricity Theft with Stacking Structure Based on Grey Relation Analysis," Energies, MDPI, vol. 15(19), pages 1-25, October.
    4. Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Otuoze, Abdulrahaman Okino & Mustafa, Mohd Wazir & Abdulrahman, Abdulhakeem Temitope & Mohammed, Olatunji Obalowu & Salisu, Sani, 2020. "Penalization of electricity thefts in smart utility networks by a cost estimation-based forced corrective measure," Energy Policy, Elsevier, vol. 143(C).
    6. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    7. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    8. Yang, Kaixiang & Chen, Wuxing & Bi, Jichao & Wang, Mengzhi & Luo, Fengji, 2023. "Multi-view broad learning system for electricity theft detection," Applied Energy, Elsevier, vol. 352(C).
    9. Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Losses: A Panel Data Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 281-286.
    10. Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Renato Grethe Negri & Fernando Guilherme Kaehler Guarda & Lucio Rene Prade & Nelson Knak Neto & Alzenira da Rosa Abaide, 2022. "Identification of Nontechnical Losses in Distribution Systems Adding Exogenous Data and Artificial Intelligence," Energies, MDPI, vol. 15(23), pages 1-23, November.
    11. Youngghyu Sun & Jiyoung Lee & Soohyun Kim & Joonho Seon & Seongwoo Lee & Chanuk Kyeong & Jinyoung Kim, 2023. "Energy Theft Detection Model Based on VAE-GAN for Imbalanced Dataset," Energies, MDPI, vol. 16(3), pages 1-13, January.
    12. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
    14. Zhang, Ziyuan & Wang, Jianzhou & Wei, Danxiang & Luo, Tianrui & Xia, Yurui, 2023. "A novel ensemble system for short-term wind speed forecasting based on Two-stage Attention-Based Recurrent Neural Network," Renewable Energy, Elsevier, vol. 204(C), pages 11-23.
    15. Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
    16. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    17. Tej Bahadur Shahi & Ashish Shrestha & Arjun Neupane & William Guo, 2020. "Stock Price Forecasting with Deep Learning: A Comparative Study," Mathematics, MDPI, vol. 8(9), pages 1-15, August.
    18. Pawan Kumar Singh & Alok Kumar Pandey & S. C. Bose, 2023. "A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2429-2446, June.
    19. Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    20. Tang, Yugui & Yang, Kuo & Zheng, Yichu & Ma, Li & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A transfer learning approach incorporating temporal convolution and adversarial training," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2778-:d:790755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.