Synthetic Theft Attacks and Long Short Term Memory-Based Preprocessing for Electricity Theft Detection Using Gated Recurrent Unit
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.
- Niu, Zhewen & Yu, Zeyuan & Tang, Wenhu & Wu, Qinghua & Reformat, Marek, 2020. "Wind power forecasting using attention-based gated recurrent unit network," Energy, Elsevier, vol. 196(C).
- Zhengwei Qu & Hongwen Li & Yunjing Wang & Jiaxi Zhang & Ahmed Abu-Siada & Yunxiao Yao, 2020. "Detection of Electricity Theft Behavior Based on Improved Synthetic Minority Oversampling Technique and Random Forest Classifier," Energies, MDPI, vol. 13(8), pages 1-20, April.
- Zeeshan Aslam & Nadeem Javaid & Ashfaq Ahmad & Abrar Ahmed & Sardar Muhammad Gulfam, 2020. "A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-24, October.
- Giovanni Micheli & Emiliano Soda & Maria Teresa Vespucci & Marco Gobbi & Alessandro Bertani, 2019. "Big data analytics: an aid to detection of non-technical losses in power utilities," Computational Management Science, Springer, vol. 16(1), pages 329-343, February.
- Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
- Xiaoquan Lu & Yu Zhou & Zhongdong Wang & Yongxian Yi & Longji Feng & Fei Wang, 2019. "Knowledge Embedded Semi-Supervised Deep Learning for Detecting Non-Technical Losses in the Smart Grid," Energies, MDPI, vol. 12(18), pages 1-18, September.
- Yong-gang Zhang & Jun Tang & Zheng-ying He & Junkun Tan & Chao Li, 2021. "A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 783-813, January.
- Haiqing Liu & Zhiqiao Li & Yuancheng Li, 2020. "Noise Reduction Power Stealing Detection Model Based on Self-Balanced Data Set," Energies, MDPI, vol. 13(7), pages 1-16, April.
- Razavi, Rouzbeh & Gharipour, Amin & Fleury, Martin & Akpan, Ikpe Justice, 2019. "A practical feature-engineering framework for electricity theft detection in smart grids," Applied Energy, Elsevier, vol. 238(C), pages 481-494.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rui Xia & Yunpeng Gao & Yanqing Zhu & Dexi Gu & Jiangzhao Wang, 2022. "An Efficient Method Combined Data-Driven for Detecting Electricity Theft with Stacking Structure Based on Grey Relation Analysis," Energies, MDPI, vol. 15(19), pages 1-25, October.
- Benish Kabir & Umar Qasim & Nadeem Javaid & Abdulaziz Aldegheishem & Nabil Alrajeh & Emad A. Mohammed, 2022. "Detecting Nontechnical Losses in Smart Meters Using a MLP-GRU Deep Model and Augmenting Data via Theft Attacks," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xuesong Tian & Yuping Zou & Xin Wang & Minglang Tseng & Hua Li & Huijuan Zhang, 2022. "Improving the Efficiency and Sustainability of Intelligent Electricity Inspection: IMFO-ELM Algorithm for Load Forecasting," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
- Benish Kabir & Umar Qasim & Nadeem Javaid & Abdulaziz Aldegheishem & Nabil Alrajeh & Emad A. Mohammed, 2022. "Detecting Nontechnical Losses in Smart Meters Using a MLP-GRU Deep Model and Augmenting Data via Theft Attacks," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
- Rui Xia & Yunpeng Gao & Yanqing Zhu & Dexi Gu & Jiangzhao Wang, 2022. "An Efficient Method Combined Data-Driven for Detecting Electricity Theft with Stacking Structure Based on Grey Relation Analysis," Energies, MDPI, vol. 15(19), pages 1-25, October.
- Savian, Fernando de Souza & Siluk, Julio Cezar Mairesse & Garlet, Taís Bisognin & do Nascimento, Felipe Moraes & Pinheiro, José Renes & Vale, Zita, 2021. "Non-technical losses: A systematic contemporary article review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Otuoze, Abdulrahaman Okino & Mustafa, Mohd Wazir & Abdulrahman, Abdulhakeem Temitope & Mohammed, Olatunji Obalowu & Salisu, Sani, 2020. "Penalization of electricity thefts in smart utility networks by a cost estimation-based forced corrective measure," Energy Policy, Elsevier, vol. 143(C).
- Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
- Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
- Yang, Kaixiang & Chen, Wuxing & Bi, Jichao & Wang, Mengzhi & Luo, Fengji, 2023. "Multi-view broad learning system for electricity theft detection," Applied Energy, Elsevier, vol. 352(C).
- Hugo Brise o & Omar Rojas, 2020. "Factors Associated with Electricity Losses: A Panel Data Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 281-286.
- Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Renato Grethe Negri & Fernando Guilherme Kaehler Guarda & Lucio Rene Prade & Nelson Knak Neto & Alzenira da Rosa Abaide, 2022. "Identification of Nontechnical Losses in Distribution Systems Adding Exogenous Data and Artificial Intelligence," Energies, MDPI, vol. 15(23), pages 1-23, November.
- Youngghyu Sun & Jiyoung Lee & Soohyun Kim & Joonho Seon & Seongwoo Lee & Chanuk Kyeong & Jinyoung Kim, 2023. "Energy Theft Detection Model Based on VAE-GAN for Imbalanced Dataset," Energies, MDPI, vol. 16(3), pages 1-13, January.
- Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
- Zhang, Ziyuan & Wang, Jianzhou & Wei, Danxiang & Luo, Tianrui & Xia, Yurui, 2023. "A novel ensemble system for short-term wind speed forecasting based on Two-stage Attention-Based Recurrent Neural Network," Renewable Energy, Elsevier, vol. 204(C), pages 11-23.
- Shengxiang Lv & Lin Wang & Sirui Wang, 2023. "A Hybrid Neural Network Model for Short-Term Wind Speed Forecasting," Energies, MDPI, vol. 16(4), pages 1-18, February.
- Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
- Tej Bahadur Shahi & Ashish Shrestha & Arjun Neupane & William Guo, 2020. "Stock Price Forecasting with Deep Learning: A Comparative Study," Mathematics, MDPI, vol. 8(9), pages 1-15, August.
- Pawan Kumar Singh & Alok Kumar Pandey & S. C. Bose, 2023. "A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2429-2446, June.
- Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
- Tang, Yugui & Yang, Kuo & Zheng, Yichu & Ma, Li & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A transfer learning approach incorporating temporal convolution and adversarial training," Renewable Energy, Elsevier, vol. 224(C).
More about this item
Keywords
theft attacks; long short term memory; gated recurrent unit; deep learning techniques; machine learning techniques; electricity theft detection; smart grids;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2778-:d:790755. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.