IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1729-d1370124.html
   My bibliography  Save this article

Detection of Non-Technical Losses on a Smart Distribution Grid Based on Artificial Intelligence Models

Author

Listed:
  • Murilo A. Souza

    (Department of Electrical Engineering, Federal University of Pernambuco, Recife 50740-550, Brazil)

  • Hugo T. V. Gouveia

    (Independent Researcher, Recife 50740-550, Brazil)

  • Aida A. Ferreira

    (Department of Electrical Systems, Federal Institute of Pernambuco, Recife 50740-545, Brazil)

  • Regina Maria de Lima Neta

    (Department of Electrical Engineering, Federal University of Pernambuco, Recife 50740-550, Brazil)

  • Otoni Nóbrega Neto

    (Department of Electrical Engineering, Federal University of Pernambuco, Recife 50740-550, Brazil)

  • Milde Maria da Silva Lira

    (Department of Electrical Engineering, Federal University of Pernambuco, Recife 50740-550, Brazil)

  • Geraldo L. Torres

    (Department of Electrical Engineering, Federal University of Pernambuco, Recife 50740-550, Brazil)

  • Ronaldo R. B. de Aquino

    (Department of Electrical Engineering, Federal University of Pernambuco, Recife 50740-550, Brazil)

Abstract

Non-technical losses (NTL) have been a growing problem over the years, causing significant financial losses for electric utilities. Among the methods for detecting this type of loss, those based on Artificial Intelligence (AI) have been the most popular. Many works use the electricity consumption profile as an input for AI models, which may not be sufficient to develop a model that achieves a high detection rate for various types of energy fraud that may occur. In this paper, using actual electricity consumption data, additional statistical and temporal features based on these data are used to improve the detection rate of various types of NTL. Furthermore, a model that combines both the electricity consumption data and these features is developed, achieving a better detection rate for all types of fraud considered.

Suggested Citation

  • Murilo A. Souza & Hugo T. V. Gouveia & Aida A. Ferreira & Regina Maria de Lima Neta & Otoni Nóbrega Neto & Milde Maria da Silva Lira & Geraldo L. Torres & Ronaldo R. B. de Aquino, 2024. "Detection of Non-Technical Losses on a Smart Distribution Grid Based on Artificial Intelligence Models," Energies, MDPI, vol. 17(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1729-:d:1370124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    2. Du, Han & Zhou, Xinlei & Nord, Natasa & Carden, Yale & Ma, Zhenjun, 2023. "A new data mining strategy for performance evaluation of a shared energy recovery system integrated with data centres and district heating networks," Energy, Elsevier, vol. 285(C).
    3. Yiran Wang & Shuowei Jin & Ming Cheng, 2023. "A Convolution–Non-Convolution Parallel Deep Network for Electricity Theft Detection," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    4. Zeeshan Aslam & Nadeem Javaid & Ashfaq Ahmad & Abrar Ahmed & Sardar Muhammad Gulfam, 2020. "A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-24, October.
    5. Farah Mohammad & Kashif Saleem & Jalal Al-Muhtadi, 2023. "Ensemble-Learning-Based Decision Support System for Energy-Theft Detection in Smart-Grid Environment," Energies, MDPI, vol. 16(4), pages 1-16, February.
    6. Mobarak Abumohsen & Amani Yousef Owda & Majdi Owda, 2023. "Electrical Load Forecasting Using LSTM, GRU, and RNN Algorithms," Energies, MDPI, vol. 16(5), pages 1-31, February.
    7. Claeys, Robbert & Cleenwerck, Rémy & Knockaert, Jos & Desmet, Jan, 2023. "Stochastic generation of residential load profiles with realistic variability based on wavelet-decomposed smart meter data," Applied Energy, Elsevier, vol. 350(C).
    8. Hany Habbak & Mohamed Mahmoud & Mostafa M. Fouda & Maazen Alsabaan & Ahmed Mattar & Gouda I. Salama & Khaled Metwally, 2023. "Efficient One-Class False Data Detector Based on Deep SVDD for Smart Grids," Energies, MDPI, vol. 16(20), pages 1-28, October.
    9. Vanessa Gindri Vieira & Daniel Pinheiro Bernardon & Vinícius André Uberti & Rodrigo Marques de Figueiredo & Lucas Melo de Chiara & Juliano Andrade Silva, 2023. "Detection of Non-Technical Losses in Irrigant Consumers through Artificial Intelligence: A Pilot Study," Energies, MDPI, vol. 16(19), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1729-:d:1370124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.