IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2281-d1391133.html
   My bibliography  Save this article

Effect of Phase Shifting on Real-Time Detection and Classification of Power Quality Disturbances

Author

Listed:
  • Enrique Reyes-Archundia

    (Tecnológico Nacional de México, Instituto Tecnológico de Morelia, Morelia 58120, Mexico)

  • Wuqiang Yang

    (Deptartment of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, UK)

  • Jose A. Gutiérrez Gnecchi

    (Tecnológico Nacional de México, Instituto Tecnológico de Morelia, Morelia 58120, Mexico)

  • Javier Rodríguez-Herrejón

    (Tecnológico Nacional de México, Instituto Tecnológico de Morelia, Morelia 58120, Mexico)

  • Juan C. Olivares-Rojas

    (Tecnológico Nacional de México, Instituto Tecnológico de Morelia, Morelia 58120, Mexico)

  • Aldo V. Rico-Medina

    (Tecnológico Nacional de México, Instituto Tecnológico de Morelia, Morelia 58120, Mexico)

Abstract

Power quality improvement and Power quality disturbance (PQD) detection are two significant concerns that must be addressed to ensure an efficient power distribution within the utility grid. When the process to analyze PQD is migrated to real-time platforms, the possible occurrence of a phase mismatch can affect the algorithm’s accuracy; this paper evaluates phase shifting as an additional stage in signal acquisition for detecting and classifying eight types of single power quality disturbances. According to their mathematical models, a set of disturbances was generated using an arbitrary waveform generator BK Precision 4064. The acquisition, detection, and classification stages were embedded into a BeagleBone Black. The detection stage was performed using multiresolution analysis. The feature vectors of the acquired signals were obtained from the combination of Shannon entropy and log-energy entropy. For classification purposes, four types of classifiers were trained: multilayer perceptron, K-nearest neighbors, probabilistic neural network, and decision tree. The results show that incorporating a phase-shifting stage as a preprocessing stage significantly improves the classification accuracy in all cases.

Suggested Citation

  • Enrique Reyes-Archundia & Wuqiang Yang & Jose A. Gutiérrez Gnecchi & Javier Rodríguez-Herrejón & Juan C. Olivares-Rojas & Aldo V. Rico-Medina, 2024. "Effect of Phase Shifting on Real-Time Detection and Classification of Power Quality Disturbances," Energies, MDPI, vol. 17(10), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2281-:d:1391133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Talada Appala Naidu & Hamad Mohamed Ali Ahmed Albeshr & Ammar Al-Sabounchi & Sajan K. Sadanandan & Tareg Ghaoud, 2023. "A Study on Various Conditions Impacting the Harmonics at Point of Common Coupling in On-Grid Solar Photovoltaic Systems," Energies, MDPI, vol. 16(17), pages 1-31, September.
    2. Wang, Shouxiang & Chen, Haiwen, 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied Energy, Elsevier, vol. 235(C), pages 1126-1140.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    2. Azam Bagheri & Roger Alves de Oliveira & Math H. J. Bollen & Irene Y. H. Gu, 2022. "A Framework Based on Machine Learning for Analytics of Voltage Quality Disturbances," Energies, MDPI, vol. 15(4), pages 1-14, February.
    3. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    4. Ren, Tao & Modest, Michael F. & Fateev, Alexander & Sutton, Gavin & Zhao, Weijie & Rusu, Florin, 2019. "Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Artvin-Darien Gonzalez-Abreu & Roque-Alfredo Osornio-Rios & Arturo-Yosimar Jaen-Cuellar & Miguel Delgado-Prieto & Jose-Alfonso Antonino-Daviu & Athanasios Karlis, 2022. "Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review," Energies, MDPI, vol. 15(5), pages 1-26, March.
    6. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    7. Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
    8. Zhang, Liangheng & Jiang, Congmei & Pang, Aiping & He, Yu, 2024. "Super-efficient detector and defense method for adversarial attacks in power quality classification," Applied Energy, Elsevier, vol. 361(C).
    9. da Silva, Roberto Perillo Barbosa & Quadros, Rodolfo & Shaker, Hamid Reza & da Silva, Luiz Carlos Pereira, 2020. "Effects of mixed electronic loads on the electrical energy systems considering different loading conditions with focus on power quality and billing issues," Applied Energy, Elsevier, vol. 277(C).
    10. Jude Suchithra & Duane Robinson & Amin Rajabi, 2023. "Hosting Capacity Assessment Strategies and Reinforcement Learning Methods for Coordinated Voltage Control in Electricity Distribution Networks: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    11. Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
    12. Mohammad Reza Shadi & Hamid Mirshekali & Rahman Dashti & Mohammad-Taghi Ameli & Hamid Reza Shaker, 2021. "A Parameter-Free Approach for Fault Section Detection on Distribution Networks Employing Gated Recurrent Unit," Energies, MDPI, vol. 14(19), pages 1-15, October.
    13. Shao, Han & Henriques, Rui & Morais, Hugo & Tedeschi, Elisabetta, 2024. "Power quality monitoring in electric grid integrating offshore wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    14. Jiajun Cai & Kai Zhang & Hui Jiang, 2023. "Power Quality Disturbance Classification Based on Parallel Fusion of CNN and GRU," Energies, MDPI, vol. 16(10), pages 1-12, May.
    15. Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
    16. Noor Hussain & Mashood Nasir & Juan Carlos Vasquez & Josep M. Guerrero, 2020. "Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review," Energies, MDPI, vol. 13(9), pages 1-31, May.
    17. Sun, Chenhao & Wang, Xin & Zheng, Yihui, 2020. "An ensemble system to predict the spatiotemporal distribution of energy security weaknesses in transmission networks," Applied Energy, Elsevier, vol. 258(C).
    18. Raquel Martinez & Pablo Castro & Alberto Arroyo & Mario Manana & Noemi Galan & Fidel Simon Moreno & Sergio Bustamante & Alberto Laso, 2022. "Techniques to Locate the Origin of Power Quality Disturbances in a Power System: A Review," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
    19. Cheng-I Chen & Sunneng Sandino Berutu & Yeong-Chin Chen & Hao-Cheng Yang & Chung-Hsien Chen, 2022. "Regulated Two-Dimensional Deep Convolutional Neural Network-Based Power Quality Classifier for Microgrid," Energies, MDPI, vol. 15(7), pages 1-16, March.
    20. Lin Yang & Linming Guo & Wenhai Zhang & Xiaomei Yang, 2022. "Classification of Multiple Power Quality Disturbances by Tunable-Q Wavelet Transform with Parameter Selection," Energies, MDPI, vol. 15(9), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2281-:d:1391133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.