IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219318900.html
   My bibliography  Save this article

Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products

Author

Listed:
  • Mirzaei, Mohammad Amin
  • Sadeghi-Yazdankhah, Ahmad
  • Mohammadi-Ivatloo, Behnam
  • Marzband, Mousa
  • Shafie-khah, Miadreza
  • Catalão, João P.S.

Abstract

Wind energy sources have created new challenges in power system scheduling to follow the network load. Gas fired units with high ramping could better deal with inherent uncertainties of wind power compared to other power generation sources. The natural gas system constraints affect the flexibility of natural gas-fired power plants in the electrical market. In this paper, three solutions have been proposed to cover the challenges of gas system constraints and the uncertainty of wind power: 1) using information-gap decision theory (IGDT) based robust approach to address the uncertainty caused by the intrinsic nature of wind power, 2) Integration of compressed air energy storage (CAES), and demand response (DR) in day-ahead scheduling and 3) considering flexible ramping products in order to ensure reliable operations, there must be enough ramp to eliminate the variability of wind power in real-time dispatch stage. This paper proposes an IGDT-based robust security constrained unit commitment (SCUC) model for coordinated electricity and natural gas systems with the integration of wind power and emerging flexible resources while taking the flexible ramping products into account. Numerical tests demonstrate the effect of emerging flexible resources on a reduction of system operation cost and the uncertainty of predicted wind power.

Suggested Citation

  • Mirzaei, Mohammad Amin & Sadeghi-Yazdankhah, Ahmad & Mohammadi-Ivatloo, Behnam & Marzband, Mousa & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318900
    DOI: 10.1016/j.energy.2019.116195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219318900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosales-Asensio, Enrique & de Simón-Martín, Miguel & Borge-Diez, David & Blanes-Peiró, Jorge Juan & Colmenar-Santos, Antonio, 2019. "Microgrids with energy storage systems as a means to increase power resilience: An application to office buildings," Energy, Elsevier, vol. 172(C), pages 1005-1015.
    2. Nojavan, Sayyad & Najafi-Ghalelou, Afshin & Majidi, Majid & Zare, Kazem, 2018. "Optimal bidding and offering strategies of merchant compressed air energy storage in deregulated electricity market using robust optimization approach," Energy, Elsevier, vol. 142(C), pages 250-257.
    3. Cui, Mingjian & Zhang, Jie, 2018. "Estimating ramping requirements with solar-friendly flexible ramping product in multi-timescale power system operations," Applied Energy, Elsevier, vol. 225(C), pages 27-41.
    4. He, Chuan & Wu, Lei & Liu, Tianqi & Wei, Wei & Wang, Cheng, 2018. "Co-optimization scheduling of interdependent power and gas systems with electricity and gas uncertainties," Energy, Elsevier, vol. 159(C), pages 1003-1015.
    5. Bjørndal, Endre & Bjørndal, Mette & Midthun, Kjetil & Tomasgard, Asgeir, 2018. "Stochastic electricity dispatch: A challenge for market design," Energy, Elsevier, vol. 150(C), pages 992-1005.
    6. Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, Pierluigi, 2017. "Evaluating the benefits of coordinated emerging flexible resources in electricity markets," Applied Energy, Elsevier, vol. 199(C), pages 142-154.
    7. Ordoudis, Christos & Pinson, Pierre & Morales, Juan M., 2019. "An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers," European Journal of Operational Research, Elsevier, vol. 272(2), pages 642-654.
    8. Chen, Yang & Hu, Mengqi & Zhou, Zhi, 2017. "A data-driven analytical approach to enable optimal emerging technologies integration in the co-optimized electricity and ancillary service markets," Energy, Elsevier, vol. 122(C), pages 613-626.
    9. Melamed, Michal & Ben-Tal, Aharon & Golany, Boaz, 2018. "A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source," Renewable Energy, Elsevier, vol. 118(C), pages 909-917.
    10. Aliasghari, Parinaz & Zamani-Gargari, Milad & Mohammadi-Ivatloo, Behnam, 2018. "Look-ahead risk-constrained scheduling of wind power integrated system with compressed air energy storage (CAES) plant," Energy, Elsevier, vol. 160(C), pages 668-677.
    11. Majidi, M. & Mohammadi-Ivatloo, B. & Soroudi, A., 2019. "Application of information gap decision theory in practical energy problems: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 157-165.
    12. Li, Guoqing & Zhang, Rufeng & Jiang, Tao & Chen, Houhe & Bai, Linquan & Li, Xiaojing, 2017. "Security-constrained bi-level economic dispatch model for integrated natural gas and electricity systems considering wind power and power-to-gas process," Applied Energy, Elsevier, vol. 194(C), pages 696-704.
    13. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    14. Kalavani, Farshad & Mohammadi-Ivatloo, Behnam & Zare, Kazem, 2019. "Optimal stochastic scheduling of cryogenic energy storage with wind power in the presence of a demand response program," Renewable Energy, Elsevier, vol. 130(C), pages 268-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norouzi, Mohammadali & Aghaei, Jamshid & Pirouzi, Sasan & Niknam, Taher & Fotuhi-Firuzabad, Mahmud, 2022. "Flexibility pricing of integrated unit of electric spring and EVs parking in microgrids," Energy, Elsevier, vol. 239(PB).
    2. Shafiekhani, Morteza & Ahmadi, Abdollah & Homaee, Omid & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal bidding strategy of a renewable-based virtual power plant including wind and solar units and dispatchable loads," Energy, Elsevier, vol. 239(PD).
    3. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    4. Van-Hai Bui & Akhtar Hussain & Thai-Thanh Nguyen & Hak-Man Kim, 2021. "Multi-Objective Stochastic Optimization for Determining Set-Point of Wind Farm System," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    5. Aldarajee, Ammar H.M. & Hosseinian, Seyed H. & Vahidi, Behrooz, 2020. "A secure tri-level planner-disaster-risk-averse replanner model for enhancing the resilience of energy systems," Energy, Elsevier, vol. 204(C).
    6. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    7. Qin, Zhijun & Mo, Yuhong & Liu, Hui & Zhang, Yihui, 2021. "Operational flexibility enhancements using mobile energy storage in day-ahead electricity market by game-theoretic approach," Energy, Elsevier, vol. 232(C).
    8. Wu, Gang & Xiang, Yue & Liu, Junyong & Gou, Jing & Shen, Xiaodong & Huang, Yuan & Jawad, Shafqat, 2020. "Decentralized day-ahead scheduling of multi-area integrated electricity and natural gas systems considering reserve optimization," Energy, Elsevier, vol. 198(C).
    9. Masoud Agabalaye-Rahvar & Amin Mansour-Saatloo & Mohammad Amin Mirzaei & Behnam Mohammadi-Ivatloo & Kazem Zare & Amjad Anvari-Moghaddam, 2020. "Robust Optimal Operation Strategy for a Hybrid Energy System Based on Gas-Fired Unit, Power-to-Gas Facility and Wind Power in Energy Markets," Energies, MDPI, vol. 13(22), pages 1-21, November.
    10. Gao, Han & Zhao, Peiyao & Li, Zhengshuo, 2024. "Dynamic security region of natural gas systems in integrated electricity-gas systems," Energy, Elsevier, vol. 289(C).
    11. Sreekumar, Sreenu & Yamujala, Sumanth & Sharma, Kailash Chand & Bhakar, Rohit & Simon, Sishaj P. & Rana, Ankur Singh, 2022. "Flexible Ramp Products: A solution to enhance power system flexibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Zhang, Yachao & Liu, Wei & Huang, Zhanghao & Zheng, Feng & Le, Jian & Zhu, Shu, 2021. "Distributionally robust coordination optimization scheduling for electricity-gas-transportation coupled system considering multiple uncertainties," Renewable Energy, Elsevier, vol. 163(C), pages 2037-2052.
    13. Daryabari, Mohamad K. & Keypour, Reza & Golmohamadi, Hessam, 2021. "Robust self-scheduling of parking lot microgrids leveraging responsive electric vehicles," Applied Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    2. Akbari, Ebrahim & Hooshmand, Rahmat-Allah & Gholipour, Mehdi & Parastegari, Moein, 2019. "Stochastic programming-based optimal bidding of compressed air energy storage with wind and thermal generation units in energy and reserve markets," Energy, Elsevier, vol. 171(C), pages 535-546.
    3. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Zhang, Yachao & Huang, Zhanghao & Zheng, Feng & Zhou, Rongyu & Le, Jian & An, Xueli, 2020. "Cooperative optimization scheduling of the electricity-gas coupled system considering wind power uncertainty via a decomposition-coordination framework," Energy, Elsevier, vol. 194(C).
    5. Oduro, Richard A. & Taylor, Peter G., 2023. "Future pathways for energy networks: A review of international experiences in high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Yuqi Zhang & Chuan He & Anqi Xv & Xiaoxiao Tang, 2022. "Two-Stage Chance-Constrained Coordinated Operation of an Integrated Gas–Electric System," Energies, MDPI, vol. 15(12), pages 1-18, June.
    7. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Optimal operation value of combined wind power and energy storage in multi-stage electricity markets," Applied Energy, Elsevier, vol. 235(C), pages 1153-1168.
    8. Bjørndal, Endre & Bjørndal, Mette Helene & Coniglio, Stefano & Körner, Marc-Fabian & Leinauer, Christina & Weibelzahl, Martin, 2023. "Energy storage operation and electricity market design: On the market power of monopolistic storage operators," European Journal of Operational Research, Elsevier, vol. 307(2), pages 887-909.
    9. Zhang, Zhi & Zhou, Ming & Chen, Yanbo & Li, Gengyin, 2023. "Exploiting the operational flexibility of AA-CAES in energy and reserve optimization scheduling by a linear reserve model," Energy, Elsevier, vol. 263(PE).
    10. Sayed, Ahmed Rabee & Wang, Cheng & Chen, Sheng & Shang, Ce & Bi, Tianshu, 2021. "Distributionally robust day-ahead operation of power systems with two-stage gas contracting," Energy, Elsevier, vol. 231(C).
    11. Hosseini, Seyed Hamid Reza & Allahham, Adib & Walker, Sara Louise & Taylor, Phil, 2020. "Optimal planning and operation of multi-vector energy networks: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    13. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    14. Zhao, Yongning & Xu, Xiandong & Qadrdan, Meysam & Wu, Jianzhong, 2021. "Optimal operation of compressor units in gas networks to provide flexibility to power systems," Applied Energy, Elsevier, vol. 290(C).
    15. Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    16. Zhao, Baining & Qian, Tong & Tang, Wenhu & Liang, Qiheng, 2022. "A data-enhanced distributionally robust optimization method for economic dispatch of integrated electricity and natural gas systems with wind uncertainty," Energy, Elsevier, vol. 243(C).
    17. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Virag, Ana & Gibescu, Madeleine, 2022. "Short term wholesale electricity market designs: A review of identified challenges and promising solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Nikoobakht, Ahmad & Aghaei, Jamshid & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "Co-operation of electricity and natural gas systems including electric vehicles and variable renewable energy sources based on a continuous-time model approach," Energy, Elsevier, vol. 200(C).
    19. Lina Silva-Rodriguez & Anibal Sanjab & Elena Fumagalli & Ana Virag & Madeleine Gibescu, 2020. "Short Term Electricity Market Designs: Identified Challenges and Promising Solutions," Papers 2011.04587, arXiv.org.
    20. Sreekumar, Sreenu & Yamujala, Sumanth & Sharma, Kailash Chand & Bhakar, Rohit & Simon, Sishaj P. & Rana, Ankur Singh, 2022. "Flexible Ramp Products: A solution to enhance power system flexibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.