IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7069-d1258751.html
   My bibliography  Save this article

Efficient One-Class False Data Detector Based on Deep SVDD for Smart Grids

Author

Listed:
  • Hany Habbak

    (Department of Computer Engineering and AI, Military Technical College, Cairo 11766, Egypt
    These authors contributed equally to this work.)

  • Mohamed Mahmoud

    (Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
    These authors contributed equally to this work.)

  • Mostafa M. Fouda

    (Department of Electrical and Computer Engineering, College of Science and Engineering, Idaho State University, Pocatello, ID 83209, USA
    Center for Advanced Energy Studies (CAES), Idaho Falls, ID 83401, USA
    These authors contributed equally to this work.)

  • Maazen Alsabaan

    (Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia
    These authors contributed equally to this work.)

  • Ahmed Mattar

    (Department of Computer Engineering and AI, Military Technical College, Cairo 11766, Egypt)

  • Gouda I. Salama

    (Department of Computer Engineering and AI, Military Technical College, Cairo 11766, Egypt
    These authors contributed equally to this work.)

  • Khaled Metwally

    (Department of Computer Engineering and AI, Military Technical College, Cairo 11766, Egypt
    These authors contributed equally to this work.)

Abstract

In the smart grid, malicious consumers can hack their smart meters to report false power consumption readings to steal electricity. Developing a machine-learning based detector for identifying these readings is a challenge due to the unavailability of malicious datasets. Most of the existing works in the literature assume attacks to compute malicious data. These detectors are trained to identify these attacks, but they cannot identify new attacks, which creates a vulnerability. Very few papers in the literature tried to address this problem by investigating anomaly detectors trained solely on benign data, but they suffer from these limitations: (1) low detection accuracy and high false alarm; (2) the need for knowledge on the malicious data to compute good detection thresholds; and (3) they cannot capture the temporal correlations of the readings and do not address the class overlapping issue caused by some deceptive attacks. To address these limitations, this paper presents a deep support vector data description ( DSVDD ) based unsupervised detector for false data in smart grid. Time-series readings are transformed into images, and the detector is exclusively trained on benign images. Our experimental results demonstrate the superior performance of our detectors compared to existing approaches in the literature. Specifically, our proposed DSVDD -based schemes have exhibited improvements of 0.5% to 3% in terms of recall and 3% to 9% in terms of the Area Under the Curve ( AUC ) when compared to existing state-of-the-art detectors.

Suggested Citation

  • Hany Habbak & Mohamed Mahmoud & Mostafa M. Fouda & Maazen Alsabaan & Ahmed Mattar & Gouda I. Salama & Khaled Metwally, 2023. "Efficient One-Class False Data Detector Based on Deep SVDD for Smart Grids," Energies, MDPI, vol. 16(20), pages 1-28, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7069-:d:1258751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hany Habbak & Mohamed Baza & Mohamed M. E. A. Mahmoud & Khaled Metwally & Ahmed Mattar & Gouda I. Salama, 2022. "Privacy-Preserving Charging Coordination Scheme for Smart Power Grids Using a Blockchain," Energies, MDPI, vol. 15(23), pages 1-23, November.
    2. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    3. Md. Nazmul Hasan & Rafia Nishat Toma & Abdullah-Al Nahid & M M Manjurul Islam & Jong-Myon Kim, 2019. "Electricity Theft Detection in Smart Grid Systems: A CNN-LSTM Based Approach," Energies, MDPI, vol. 12(17), pages 1-18, August.
    4. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    5. Adnan Khattak & Rasool Bukhsh & Sheraz Aslam & Ayman Yafoz & Omar Alghushairy & Raed Alsini, 2022. "A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sufian A. Badawi & Djamel Guessoum & Isam Elbadawi & Ameera Albadawi, 2022. "A Novel Time-Series Transformation and Machine-Learning-Based Method for NTL Fraud Detection in Utility Companies," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
    2. Yiran Wang & Shuowei Jin & Ming Cheng, 2023. "A Convolution–Non-Convolution Parallel Deep Network for Electricity Theft Detection," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    3. Zeeshan Aslam & Nadeem Javaid & Ashfaq Ahmad & Abrar Ahmed & Sardar Muhammad Gulfam, 2020. "A Combined Deep Learning and Ensemble Learning Methodology to Avoid Electricity Theft in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-24, October.
    4. Lisardo Prieto González & Anna Fensel & Juan Miguel Gómez Berbís & Angela Popa & Antonio de Amescua Seco, 2021. "A Survey on Energy Efficiency in Smart Homes and Smart Grids," Energies, MDPI, vol. 14(21), pages 1-16, November.
    5. Adnan Khattak & Rasool Bukhsh & Sheraz Aslam & Ayman Yafoz & Omar Alghushairy & Raed Alsini, 2022. "A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    6. Akram Qashou & Sufian Yousef & Firas Hazzaa & Kahtan Aziz, 2024. "Temporal forecasting by converting stochastic behaviour into a stable pattern in electric grid," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4426-4442, September.
    7. Gao, Bixuan & Kong, Xiangyu & Li, Shangze & Chen, Yi & Zhang, Xiyuan & Liu, Ziyu & Lv, Weijia, 2024. "Enhancing anomaly detection accuracy and interpretability in low-quality and class imbalanced data: A comprehensive approach," Applied Energy, Elsevier, vol. 353(PB).
    8. Weijia Wen & Xiao Ling & Jianxin Sui & Junjie Lin, 2023. "Data-Driven Dynamic Stability Assessment in Large-Scale Power Grid Based on Deep Transfer Learning," Energies, MDPI, vol. 16(3), pages 1-15, January.
    9. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    10. Fangzong Wang & Zuhaib Nishtar, 2024. "Real-Time Load Forecasting and Adaptive Control in Smart Grids Using a Hybrid Neuro-Fuzzy Approach," Energies, MDPI, vol. 17(11), pages 1-24, May.
    11. Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Secure and Efficient Communication in Smart Grids," Energies, MDPI, vol. 16(15), pages 1-2, July.
    12. Du, Han & Zhou, Xinlei & Nord, Natasa & Carden, Yale & Ma, Zhenjun, 2023. "A new data mining strategy for performance evaluation of a shared energy recovery system integrated with data centres and district heating networks," Energy, Elsevier, vol. 285(C).
    13. Akram Qashou & Sufian Yousef & Erika Sanchez-Velazquez, 2022. "Mining sensor data in a smart environment: a study of control algorithms and microgrid testbed for temporal forecasting and patterns of failure," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2371-2390, October.
    14. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    15. Xiaofeng Feng & Hengyu Hui & Ziyang Liang & Wenchong Guo & Huakun Que & Haoyang Feng & Yu Yao & Chengjin Ye & Yi Ding, 2020. "A Novel Electricity Theft Detection Scheme Based on Text Convolutional Neural Networks," Energies, MDPI, vol. 13(21), pages 1-17, November.
    16. Francisco Jonatas Siqueira Coelho & Allan Rivalles Souza Feitosa & André Luís Michels Alcântara & Kaifeng Li & Ronaldo Ferreira Lima & Victor Rios Silva & Abel Guilhermino da Silva-Filho, 2023. "HyMOTree: Automatic Hyperparameters Tuning for Non-Technical Loss Detection Based on Multi-Objective and Tree-Based Algorithms," Energies, MDPI, vol. 16(13), pages 1-22, June.
    17. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    18. Theyazn H. H. Aldhyani & Hasan Alkahtani, 2023. "Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
    19. Mitra, Somalee & Chakraborty, Basab & Mitra, Pabitra, 2024. "Smart meter data analytics applications for secure, reliable and robust grid system: Survey and future directions," Energy, Elsevier, vol. 289(C).
    20. Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7069-:d:1258751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.