Economic, Environmental and Social Benefits of Adoption of Pyrolysis Process of Tires: A Feasible and Ecofriendly Mode to Reduce the Impacts of Scrap Tires in Brazil
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ayanoğlu, Abdulkadir & Yumrutaş, Recep, 2016. "Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis," Energy, Elsevier, vol. 103(C), pages 456-468.
- Dong, Ruikun & Zhao, Mengzhen, 2018. "Research on the pyrolysis process of crumb tire rubber in waste cooking oil," Renewable Energy, Elsevier, vol. 125(C), pages 557-567.
- Hita, Idoia & Arabiourrutia, Miriam & Olazar, Martin & Bilbao, Javier & Arandes, José María & Castaño, Pedro, 2016. "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 745-759.
- Miranda, Amanda Carvalho & da Silva Filho, Silvério Catureba & Tambourgi, Elias Basile & CurveloSantana, José Carlos & Vanalle, Rosangela Maria & Guerhardt, Flávio, 2018. "Analysis of the costs and logistics of biodiesel production from used cooking oil in the metropolitan region of Campinas (Brazil)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 373-379.
- Huijbregts, Mark A.J. & Hellweg, Stefanie & Frischknecht, Rolf & Hungerbuhler, Konrad & Hendriks, A. Jan, 2008. "Ecological footprint accounting in the life cycle assessment of products," Ecological Economics, Elsevier, vol. 64(4), pages 798-807, February.
- Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Flavio Guerhardt & Thadeu Alfredo Farias Silva & Felix Martin Carbajal Gamarra & Silvestre Eduardo Rocha Ribeiro Júnior & Segundo Alberto Vásquez Llanos & Ada Patricia Barturén Quispe & Milton Vieira , 2020. "A Smart Grid System for Reducing Energy Consumption and Energy Cost in Buildings in São Paulo, Brazil," Energies, MDPI, vol. 13(15), pages 1-22, July.
- Esra Aleisa & Rawa Al-Jarallah, 2024. "Optimizing life cycle sustainability based on municipal solid waste streams and treatment potentials," Environment Systems and Decisions, Springer, vol. 44(4), pages 887-905, December.
- Haodong Chen & Hengyi Zhang & Eias Al Humdan & Mohammed Alharithi & Yu Gong, 2023. "Research on Multi-Channel Supply Chain Decisions Considering Carbon Emission Cost and Consumer Loyalty," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
- Marcos Geraldo Gomes & Victor Hugo Carlquist da Silva & Luiz Fernando Rodrigues Pinto & Plinio Centoamore & Salvatore Digiesi & Francesco Facchini & Geraldo Cardoso de Oliveira Neto, 2020. "Economic, Environmental and Social Gains of the Implementation of Artificial Intelligence at Dam Operations toward Industry 4.0 Principles," Sustainability, MDPI, vol. 12(9), pages 1-19, April.
- Leonel J. R. Nunes & Laura Guimarães & Miguel Oliveira & Peter Kille & Nuno G. C. Ferreira, 2022. "Thermochemical Conversion Processes as a Path for Sustainability of the Tire Industry: Carbon Black Recovery Potential in a Circular Economy Approach," Clean Technol., MDPI, vol. 4(3), pages 1-16, July.
- Xinxin Tang & Xuesong Wei & Songying Chen, 2019. "Continuous Pyrolysis Technology for Oily Sludge Treatment in the Chain-Slap Conveyors," Sustainability, MDPI, vol. 11(13), pages 1-10, July.
- José Carlos Curvelo Santana & Amanda Carvalho Miranda & Luane Souza & Charles Lincoln Kenji Yamamura & Diego de Freitas Coelho & Elias Basile Tambourgi & Fernando Tobal Berssaneti & Linda Lee Ho, 2021. "Clean Production of Biofuel from Waste Cooking Oil to Reduce Emissions, Fuel Cost, and Respiratory Disease Hospitalizations," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
- Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Ahmad Jamil & Daniyal Murtaza & Mansour Al Qubeissi & Mehtab UI Hassan & M. A. Mujtaba, 2021. "Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
- Irina Glushankova & Aleksandr Ketov & Marina Krasnovskikh & Larisa Rudakova & Iakov Vaisman, 2019. "End of Life Tires as a Possible Source of Toxic Substances Emission in the Process of Combustion," Resources, MDPI, vol. 8(2), pages 1-10, June.
- Hua Huang & Daizhong Su & Wenjie Peng & You Wu, 2020. "Development of a Mobile Application System for Eco-Accounting," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
- Hsin Rau & Mary Deanne M. Lagapa & Po-Hsun Chen, 2021. "Anticipatory Non-Green-Phenomena Determination for Designing Eco-Design Products," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bi, Rongshan & Zhang, Yan & Jiang, Xiao & Yang, Haixing & Yan, Kejia & Han, Min & Li, Wenhua & Zhong, Hua & Tan, Xinshun & Xia, Li & Sun, Xiaoyan & Xiang, Shuangguang, 2022. "Simulation and techno-economical analysis on the pyrolysis process of waste tire," Energy, Elsevier, vol. 260(C).
- Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
- Gamboa, Alexander R. & Rocha, Ana M.A. & dos Santos, Leila R. & de Carvalho, João A., 2020. "Tire pyrolysis oil in Brazil: Potential production and quality of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
- María Teresa Martín & Juan Luis Aguirre & Juan Baena-González & Sergio González & Roberto Pérez-Aparicio & Leticia Saiz-Rodríguez, 2022. "Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires," Energies, MDPI, vol. 15(6), pages 1-17, March.
- Cho, Seong-Heon & Oh, Jeong-Ik & Jung, Sungyup & Park, Young-Kwon & Tsang, Yiu Fai & Ok, Yong Sik & Kwon, Eilhann E., 2020. "Catalytic pyrolytic platform for scrap tires using CO2 and steel slag," Applied Energy, Elsevier, vol. 259(C).
- Martínez, Juan Daniel, 2021. "An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
- Alvarez, J. & Lopez, G. & Amutio, M. & Mkhize, N.M. & Danon, B. & van der Gryp, P. & Görgens, J.F. & Bilbao, J. & Olazar, M., 2017. "Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor," Energy, Elsevier, vol. 128(C), pages 463-474.
- Machin, Einara Blanco & Pedroso, Daniel Travieso & de Carvalho, João Andrade, 2017. "Energetic valorization of waste tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 306-315.
- Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
- Simona Di Fraia & M. Rakib Uddin, 2022. "Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
- Debrupa Chakraborty & Joyashree Roy, 2015. "Ecological footprint of paperboard and paper production unit in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 909-921, August.
- Zhang, Jiehan & Wang, Xinkun & Chen, Zhaohui & Zhang, Xinyu & Yue, Junrong & Zhou, Ridong & Lai, Dengguo & Yu, Jian & Li, Jianling & Xu, Guangwen, 2024. "Regulation of volatile reactions through thermal/catalytic cracking during scrap tires pyrolysis for high-valued chemicals production," Energy, Elsevier, vol. 294(C).
- César Augusto Hidalgo & Juan José Bustamante-Hernández, 2020. "A New Sustainable Geotechnical Reinforcement System from Old Tires: Experimental Evaluation by Pullout Tests," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
- Shi, Zijie & Zhang, Kai & Jiang, Kaiyu & Li, Haoran & Ye, Peiliang & Yang, Haibin & Mahian, Omid, 2023. "Maximizing energy generation: A study of radiative cooling-based thermoelectric power devices," Energy, Elsevier, vol. 274(C).
- Batara Surya & Hamsina Hamsina & Ridwan Ridwan & Baharuddin Baharuddin & Firman Menne & Andi Tenri Fitriyah & Emil Salim Rasyidi, 2020. "The Complexity of Space Utilization and Environmental Pollution Control in the Main Corridor of Makassar City, South Sulawesi, Indonesia," Sustainability, MDPI, vol. 12(21), pages 1-41, November.
- Ashraf Aljarmouzi & Ruikun Dong, 2022. "Sustainable Asphalt Rejuvenation by Using Waste Tire Rubber Mixed with Waste Oils," Sustainability, MDPI, vol. 14(14), pages 1-27, July.
- Mikulski, Maciej & Ambrosewicz-Walacik, Marta & Duda, Kamil & Hunicz, Jacek, 2020. "Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel," Renewable Energy, Elsevier, vol. 148(C), pages 739-755.
- Tran, Nghiep Nam & Tišma, Marina & Budžaki, Sandra & McMurchie, Edward J. & Gonzalez, Olivia Maria Morales & Hessel, Volker & Ngothai, Yung, 2018. "Scale-up and economic analysis of biodiesel production from recycled grease trap waste," Applied Energy, Elsevier, vol. 229(C), pages 142-150.
- Jouhara, H. & Czajczyńska, D. & Ghazal, H. & Krzyżyńska, R. & Anguilano, L. & Reynolds, A.J. & Spencer, N., 2017. "Municipal waste management systems for domestic use," Energy, Elsevier, vol. 139(C), pages 485-506.
More about this item
Keywords
carbon credit; eco-efficiency; environmental cost accounting; pyrolysis; solid waste;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:7:p:2076-:d:220742. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.