IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318513.html
   My bibliography  Save this article

Catalytic pyrolytic platform for scrap tires using CO2 and steel slag

Author

Listed:
  • Cho, Seong-Heon
  • Oh, Jeong-Ik
  • Jung, Sungyup
  • Park, Young-Kwon
  • Tsang, Yiu Fai
  • Ok, Yong Sik
  • Kwon, Eilhann E.

Abstract

This study specifically examined CO2-cofeeding pyrolysis of scrap tire (ST) to enhance H2 generation. Thus, volatile pyrolysates (syngas and pyrolytic oil) from the thermolysis of ST in N2 and CO2 were compared to elucidate the mechanistic roles of CO2. To this end, laboratory scale of pyrolysis of ST from N2 and CO2 was conducted in this study. The gaseous effluents from a pyrolyzer showed that enhanced CO evolution only from CO2-cofeeding pyrolysis of ST. Moreover, a substantial decrease in the formation of benzene derivatives (BDs) including polycyclic aromatic hydrocarbons (PAHs) was discovered from CO2-cofeeding pyrolysis of ST. Those findings offered that CO2 could improve pyrolysis of ST by modifying the pyrogenic products, and those enhanced pyrolysis behaviors were ascribed to the homogeneous interaction between CO2 and pyrolysates from the pyrolysis of ST (more CO generation). To advance the identified roles of CO2, catalytic pyrolysis of ST in CO2 was carried out using steel slag (SS) as a catalyst. In the presence of SS, the effectiveness of CO2 on pyrolysis of ST was dramatically enhanced (~400% enhancement at 400 °C). Therefore, this study experimentally justified that the utilization of SS could alleviate the environmental burdens by adopting CO2 in pyrolysis of ST. Also, the CO enhancement by CO2 likely leads to the H2 enhancement when the water-gas-shift (WGS) reaction was also conducted. All experimental findings from this study suggested that the use of CO2 in pyrolysis of ST could be a breakthrough to enhance H2 formation.

Suggested Citation

  • Cho, Seong-Heon & Oh, Jeong-Ik & Jung, Sungyup & Park, Young-Kwon & Tsang, Yiu Fai & Ok, Yong Sik & Kwon, Eilhann E., 2020. "Catalytic pyrolytic platform for scrap tires using CO2 and steel slag," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318513
    DOI: 10.1016/j.apenergy.2019.114164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokrzycki, Eugeniusz & Uliasz-Bochenczyk, Alicja & Sarna, Mieczyslaw, 2003. "Use of alternative fuels in the Polish cement industry," Applied Energy, Elsevier, vol. 74(1-2), pages 101-111, January.
    2. Choi, Gyung-Goo & Oh, Seung-Jin & Kim, Joo-Sik, 2016. "Scrap tire pyrolysis using a new type two-stage pyrolyzer: Effects of dolomite and olivine on producing a low-sulfur pyrolysis oil," Energy, Elsevier, vol. 114(C), pages 457-464.
    3. Porzio, Giacomo Filippo & Colla, Valentina & Fornai, Barbara & Vannucci, Marco & Larsson, Mikael & Stripple, Håkan, 2016. "Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap," Applied Energy, Elsevier, vol. 161(C), pages 656-672.
    4. Hita, Idoia & Arabiourrutia, Miriam & Olazar, Martin & Bilbao, Javier & Arandes, José María & Castaño, Pedro, 2016. "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 745-759.
    5. Kumaravel, S.T. & Murugesan, A. & Kumaravel, A., 2016. "Tyre pyrolysis oil as an alternative fuel for diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1678-1685.
    6. Sharma, V. K. & Fortuna, F. & Mincarini, M. & Berillo, M. & Cornacchia, G., 2000. "Disposal of waste tyres for energy recovery and safe environment," Applied Energy, Elsevier, vol. 65(1-4), pages 381-394, April.
    7. Lee, Jong Min & Lee, Jung Soo & Kim, Jung Rae & Kim, Sang Done, 1995. "Pyrolysis of waste tires with partial oxidation in a fluidized-bed reactor," Energy, Elsevier, vol. 20(10), pages 969-976.
    8. Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
    9. Policella, Matteo & Wang, Zhiwei & Burra, Kiran. G. & Gupta, Ashwani K., 2019. "Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires," Applied Energy, Elsevier, vol. 254(C).
    10. Kim, Jung-Hun & Oh, Jeong-Ik & Lee, Jechan & Kwon, Eilhann E., 2019. "Valorization of sewage sludge via a pyrolytic platform using carbon dioxide as a reactive gas medium," Energy, Elsevier, vol. 179(C), pages 163-172.
    11. Mokrzycki, Eugeniusz & Uliasz- Bochenczyk, Alicja, 2003. "Alternative fuels for the cement industry," Applied Energy, Elsevier, vol. 74(1-2), pages 95-100, January.
    12. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    13. Martínez, Juan Daniel & Puy, Neus & Murillo, Ramón & García, Tomás & Navarro, María Victoria & Mastral, Ana Maria, 2013. "Waste tyre pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 179-213.
    14. Choi, Gyung-Goo & Oh, Seung-Jin & Kim, Joo-Sik, 2016. "Non-catalytic pyrolysis of scrap tires using a newly developed two-stage pyrolyzer for the production of a pyrolysis oil with a low sulfur content," Applied Energy, Elsevier, vol. 170(C), pages 140-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    2. Song, Weiming & Huang, Yifeng & Chen, Xiaoqing & Jiang, Rui & Li, Yujie & Zhou, Jianan, 2023. "CO2 gasification of dry quenching dust ash catalyzed in situ by soot," Renewable Energy, Elsevier, vol. 211(C), pages 595-606.
    3. Di Gao & Fu-Ping Wang & Yi-Tong Wang & Ya-Nan Zeng, 2020. "Sustainable Utilization of Steel Slag from Traditional Industry and Agriculture to Catalysis," Sustainability, MDPI, vol. 12(21), pages 1-9, November.
    4. Wang, Chi-Hwa & Ok, Yong Sik & You, Siming & Wang, Xiaonan, 2020. "The research and development of waste-to-hydrogen technologies and systems," Applied Energy, Elsevier, vol. 268(C).
    5. Pedro Mora & Arturo Alarcón & Sandra Tercero & Bernardo Llamas, 2021. "Method to assess biomass in scrap tires: Spanish cement sector as a case study," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8524-8541, June.
    6. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Alvarez, J. & Lopez, G. & Amutio, M. & Mkhize, N.M. & Danon, B. & van der Gryp, P. & Görgens, J.F. & Bilbao, J. & Olazar, M., 2017. "Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor," Energy, Elsevier, vol. 128(C), pages 463-474.
    3. Martínez, Juan Daniel & Puy, Neus & Murillo, Ramón & García, Tomás & Navarro, María Victoria & Mastral, Ana Maria, 2013. "Waste tyre pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 179-213.
    4. Bi, Rongshan & Zhang, Yan & Jiang, Xiao & Yang, Haixing & Yan, Kejia & Han, Min & Li, Wenhua & Zhong, Hua & Tan, Xinshun & Xia, Li & Sun, Xiaoyan & Xiang, Shuangguang, 2022. "Simulation and techno-economical analysis on the pyrolysis process of waste tire," Energy, Elsevier, vol. 260(C).
    5. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    6. Martínez, Juan Daniel, 2021. "An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Li, Dan & Lei, Shijun & Lin, Fawei & Zhong, Lei & Ma, Wenchao & Chen, Guanyi, 2020. "Study of scrap tires pyrolysis – Products distribution and mechanism," Energy, Elsevier, vol. 213(C).
    8. Choi, Gyung-Goo & Oh, Seung-Jin & Kim, Joo-Sik, 2017. "Clean pyrolysis oil from a continuous two-stage pyrolysis of scrap tires using in-situ and ex-situ desulfurization," Energy, Elsevier, vol. 141(C), pages 2234-2241.
    9. Gamboa, Alexander R. & Rocha, Ana M.A. & dos Santos, Leila R. & de Carvalho, João A., 2020. "Tire pyrolysis oil in Brazil: Potential production and quality of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    10. María Teresa Martín & Juan Luis Aguirre & Juan Baena-González & Sergio González & Roberto Pérez-Aparicio & Leticia Saiz-Rodríguez, 2022. "Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires," Energies, MDPI, vol. 15(6), pages 1-17, March.
    11. Amir Rowhani & Thomas J. Rainey, 2016. "Scrap Tyre Management Pathways and Their Use as a Fuel—A Review," Energies, MDPI, vol. 9(11), pages 1-26, October.
    12. Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
    13. Mikulčić, Hrvoje & Vujanović, Milan & Duić, Neven, 2013. "Reducing the CO2 emissions in Croatian cement industry," Applied Energy, Elsevier, vol. 101(C), pages 41-48.
    14. Saidur, R. & Atabani, A.E. & Mekhilef, S., 2011. "A review on electrical and thermal energy for industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2073-2086, May.
    15. Puig-Arnavat, Maria & Søgaard, Martin & Hjuler, Klaus & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Hendriksen, Peter Vang, 2015. "Integration of oxygen membranes for oxygen production in cement plants," Energy, Elsevier, vol. 91(C), pages 852-865.
    16. Essossinam Beguedou & Satyanarayana Narra & Ekua Afrakoma Armoo & Komi Agboka & Mani Kongnine Damgou, 2023. "Alternative Fuels Substitution in Cement Industries for Improved Energy Efficiency and Sustainability," Energies, MDPI, vol. 16(8), pages 1-29, April.
    17. Xinhang Xu & Chongchong Qi & Xabier M. Aretxabaleta & Chundi Ma & Dino Spagnoli & Hegoi Manzano, 2024. "The initial stages of cement hydration at the molecular level," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Hita, Idoia & Arabiourrutia, Miriam & Olazar, Martin & Bilbao, Javier & Arandes, José María & Castaño, Pedro, 2016. "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 745-759.
    19. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2019. "Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene," Energy, Elsevier, vol. 166(C), pages 343-351.
    20. Li, Jia & Tharakan, Pradeep & Macdonald, Douglas & Liang, Xi, 2013. "Technological, economic and financial prospects of carbon dioxide capture in the cement industry," Energy Policy, Elsevier, vol. 61(C), pages 1377-1387.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.