IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v103y2016icp456-468.html
   My bibliography  Save this article

Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis

Author

Listed:
  • Ayanoğlu, Abdulkadir
  • Yumrutaş, Recep

Abstract

This study has dealt with the pyrolysis of waste tire by using catalytic distillation method to obtain engine fuels. WTO (Waste tire oil) product that had the 40% ratio was produced with 42% char, and the remaining 18% was released to atmosphere as gaseous by product. The WTO was mixed with two additives, namely naturel zeolite and lime, at different mass ratio. Each fuel sample was exposed to pyrolytic distillation to obtain light and heavy fuel products. Characteristics of the as-produced fuels were determined and their distillation tests were investigated. As a result of these tests, the lime mixture fuel sample at 10 wt% ratio of has shown the best results, has acquired the optimum distillation temperatures and was close to diesel fuel. This mixture was categorized as light and heavy fuels according to its distillation test results. Characteristics of those light and heavy fuels were resembled to those of gasoline and diesel fuel, which were named as GLF (gasoline-like fuel) and DLF (diesel-like fuel), respectively. Fractions of the as-produced fuels were 18 wt% of the WTO for the light fuel, and 70 wt% for heavy fuel. The other product was 12 wt% of the residues.

Suggested Citation

  • Ayanoğlu, Abdulkadir & Yumrutaş, Recep, 2016. "Production of gasoline and diesel like fuels from waste tire oil by using catalytic pyrolysis," Energy, Elsevier, vol. 103(C), pages 456-468.
  • Handle: RePEc:eee:energy:v:103:y:2016:i:c:p:456-468
    DOI: 10.1016/j.energy.2016.02.155
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geraldo Cardoso de Oliveira Neto & Luiz Eduardo Carvalho Chaves & Luiz Fernando Rodrigues Pinto & José Carlos Curvelo Santana & Marlene Paula Castro Amorim & Mário Jorge Ferreira Rodrigues, 2019. "Economic, Environmental and Social Benefits of Adoption of Pyrolysis Process of Tires: A Feasible and Ecofriendly Mode to Reduce the Impacts of Scrap Tires in Brazil," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    2. Qing-Zhou Wang & Zhan-Di Chen & Kuo-Ping Lin & Ching-Hsin Wang, 2018. "Estimation and Analysis of Energy Conservation and Emissions Reduction Effects of Warm-Mix Crumb Rubber-Modified Asphalts during Construction Period," Sustainability, MDPI, vol. 10(12), pages 1-18, November.
    3. Simona Di Fraia & M. Rakib Uddin, 2022. "Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    4. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    5. Machin, Einara Blanco & Pedroso, Daniel Travieso & de Carvalho, João Andrade, 2017. "Energetic valorization of waste tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 306-315.
    6. Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
    7. Rosha, Pali & Kumar, Sandeep & Ibrahim, Hussameldin, 2022. "Sensitivity analysis of biomass pyrolysis for renewable fuel production using Aspen Plus," Energy, Elsevier, vol. 247(C).
    8. Alexey Paukov & Romen Magaril & Elena Magaril, 2019. "An Investigation of the Feasibility of the Organic Municipal Solid Waste Processing by Coking," Sustainability, MDPI, vol. 11(2), pages 1-13, January.
    9. Bi, Rongshan & Zhang, Yan & Jiang, Xiao & Yang, Haixing & Yan, Kejia & Han, Min & Li, Wenhua & Zhong, Hua & Tan, Xinshun & Xia, Li & Sun, Xiaoyan & Xiang, Shuangguang, 2022. "Simulation and techno-economical analysis on the pyrolysis process of waste tire," Energy, Elsevier, vol. 260(C).
    10. Sharma, Abhishek & Murugan, S., 2017. "Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel," Energy, Elsevier, vol. 127(C), pages 236-246.
    11. Alvarez, J. & Lopez, G. & Amutio, M. & Mkhize, N.M. & Danon, B. & van der Gryp, P. & Görgens, J.F. & Bilbao, J. & Olazar, M., 2017. "Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor," Energy, Elsevier, vol. 128(C), pages 463-474.
    12. Gamboa, Alexander R. & Rocha, Ana M.A. & dos Santos, Leila R. & de Carvalho, João A., 2020. "Tire pyrolysis oil in Brazil: Potential production and quality of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    13. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    14. Suiuay, Chokchai & Sudajan, Somposh & Katekaew, Somporn & Senawong, Kritsadang & Laloon, Kittipong, 2019. "Production of gasoline-like-fuel and diesel-like-fuel from hard-resin of Yang (Dipterocarpus alatus) using a fast pyrolysis process," Energy, Elsevier, vol. 187(C).
    15. Zhao, Xinyue & Chen, Heng & Li, Sarengaowa & Li, Wenchao & Pan, Peiyuan & Liu, Tao & Wu, Lining & Xu, Gang, 2023. "Thermodynamic and economic analysis of a novel design combining waste tire pyrolysis with silicon production waste heat recovery and organic Rankine cycle," Energy, Elsevier, vol. 283(C).
    16. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:103:y:2016:i:c:p:456-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.