IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i2p502-d199012.html
   My bibliography  Save this article

Sustainable Integrated Process Planning and Scheduling Optimization Using a Genetic Algorithm with an Integrated Chromosome Representation

Author

Listed:
  • Hyun Cheol Lee

    (School of Business, Korea Aerospace University, 76 Hanggongdaehak-ro, Goyang-si 10540, Korea)

  • Chunghun Ha

Abstract

This paper proposes a genetic algorithm (GA) to find the pseudo-optimum of integrated process planning and scheduling (IPPS) problems. IPPS is a combinatorial optimization problem of the NP-complete class that aims to solve both process planning and scheduling simultaneously. The complexity of IPPS is very high because it reflects various flexibilities and constraints under flexible manufacturing environments. To cope with it, existing metaheuristics for IPPS have excluded some flexibilities and constraints from consideration or have built a complex structured algorithm. Particularly, GAs have been forced to construct multiple chromosomes to account for various flexibilities, which complicates algorithm procedures and degrades performance. The proposed new integrated chromosome representation makes it possible to incorporate various flexibilities into a single string. This enables the adaptation of a simple and typical GA procedure and previously developed genetic operators. Experiments on a set of benchmark problems showed that the proposed GA improved makespan by an average of 17% against the recently developed metaheuristics for IPPS in much shorter computation times.

Suggested Citation

  • Hyun Cheol Lee & Chunghun Ha, 2019. "Sustainable Integrated Process Planning and Scheduling Optimization Using a Genetic Algorithm with an Integrated Chromosome Representation," Sustainability, MDPI, vol. 11(2), pages 1-23, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:502-:d:199012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/2/502/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/2/502/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Luping & Wong, T.N., 2015. "An object-coding genetic algorithm for integrated process planning and scheduling," European Journal of Operational Research, Elsevier, vol. 244(2), pages 434-444.
    2. Thomalla, Christoph S., 2001. "Job shop scheduling with alternative process plans," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 125-134, December.
    3. Modi, Bimal K. & Shanker, Kripa, 1994. "A formulation and solution methodology for part movement minimization and workload balancing at loading decisions in FMS," International Journal of Production Economics, Elsevier, vol. 34(1), pages 73-82, February.
    4. Wenzhu Liao & Tong Wang, 2018. "Promoting Green and Sustainability: A Multi-Objective Optimization Method for the Job-Shop Scheduling Problem," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
    5. S. Zhang & T. N. Wong, 2018. "Integrated process planning and scheduling: an enhanced ant colony optimization heuristic with parameter tuning," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 585-601, March.
    6. Li, Xinyu & Shao, Xinyu & Gao, Liang & Qian, Weirong, 2010. "An effective hybrid algorithm for integrated process planning and scheduling," International Journal of Production Economics, Elsevier, vol. 126(2), pages 289-298, August.
    7. Li, Xinyu & Gao, Liang, 2016. "An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 174(C), pages 93-110.
    8. Jianping Dou & Jun Li & Chun Su, 2018. "A discrete particle swarm optimisation for operation sequencing in CAPP," International Journal of Production Research, Taylor & Francis Journals, vol. 56(11), pages 3795-3814, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changhyun Kim & KwangSup Shin, 2019. "Developing Fair Investment Plans to Enhance Supply Chain Visibility Using Cooperative Games," Sustainability, MDPI, vol. 11(11), pages 1-13, June.
    2. Mohammad Reza Hosseinzadeh & Mehdi Heydari & Mohammad Mahdavi Mazdeh, 2022. "Mathematical modeling and two metaheuristic algorithms for integrated process planning and group scheduling with sequence-dependent setup time," Operational Research, Springer, vol. 22(5), pages 5055-5105, November.
    3. Qihao Liu & Xinyu Li & Liang Gao, 2021. "Mathematical modeling and a hybrid evolutionary algorithm for process planning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 781-797, March.
    4. Qingmiao Liao & Jianjun Yang & Yong Zhou, 2019. "Sustainable Scheduling of an Automatic Pallet Changer System by Multi-Objective Evolutionary Algorithm with First Piece Inspection," Sustainability, MDPI, vol. 11(5), pages 1-24, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xuedong & Son, Junbo & Zhang, Xi & Wu, Jianguo, 2023. "Constraint programming and logic-based Benders decomposition for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 117(C).
    2. Chunghun Ha, 2020. "Evolving ant colony system for large-sized integrated process planning and scheduling problem considering sequence-dependent setup times," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 523-560, September.
    3. Qihao Liu & Xinyu Li & Liang Gao, 2021. "Mathematical modeling and a hybrid evolutionary algorithm for process planning," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 781-797, March.
    4. Zhang, Sicheng & Li, Xiang & Zhang, Bowen & Wang, Shouyang, 2020. "Multi-objective optimisation in flexible assembly job shop scheduling using a distributed ant colony system," European Journal of Operational Research, Elsevier, vol. 283(2), pages 441-460.
    5. Barzanji, Ramin & Naderi, Bahman & Begen, Mehmet A., 2020. "Decomposition algorithms for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 93(C).
    6. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.
    7. Lunardi, Willian T. & Birgin, Ernesto G. & Ronconi, Débora P. & Voos, Holger, 2021. "Metaheuristics for the online printing shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 293(2), pages 419-441.
    8. Oscar Alberto Alvarez-Flores & Raúl Rivera-Blas & Luis Armando Flores-Herrera & Emmanuel Zenén Rivera-Blas & Miguel Angel Funes-Lora & Paola Andrea Niño-Suárez, 2024. "A Novel Modified Discrete Differential Evolution Algorithm to Solve the Operations Sequencing Problem in CAPP Systems," Mathematics, MDPI, vol. 12(12), pages 1-20, June.
    9. Boxuan Zhao & Jianmin Gao & Kun Chen & Ke Guo, 2018. "Two-generation Pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 93-108, January.
    10. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R & M. Calle, 2020. "Scheduling a dual-resource flexible job shop with makespan and due date-related criteria," Annals of Operations Research, Springer, vol. 291(1), pages 5-35, August.
    11. Abdessamad Ait El Cadi & Omar Souissi & Rabie Ben Atitallah & Nicolas Belanger & Abdelhakim Artiba, 2018. "Mathematical programming models for scheduling in a CPU/FPGA architecture with heterogeneous communication delays," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 629-640, March.
    12. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    13. Wenkang Zhang & Yufan Zheng & Rafiq Ahmad, 2023. "The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2963-2988, October.
    14. Yuming Guo, 2023. "Towards the efficient generation of variant design in product development networks: network nodes importance based product configuration evaluation approach," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 615-631, February.
    15. M. Hajibabaei & J. Behnamian, 2023. "Fuzzy cleaner production in assembly flexible job-shop scheduling with machine breakdown and batch transportation: Lagrangian relaxation," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-26, July.
    16. Xianbo Xiang & Caoyang Yu & He Xu & Stuart X. Zhu, 2018. "Optimization of Heterogeneous Container Loading Problem with Adaptive Genetic Algorithm," Complexity, Hindawi, vol. 2018, pages 1-12, November.
    17. Xu Zhang & Hua Zhang & Jin Yao, 2020. "Multi-Objective Optimization of Integrated Process Planning and Scheduling Considering Energy Savings," Energies, MDPI, vol. 13(23), pages 1-31, November.
    18. Wenzhu Liao & Tong Wang, 2019. "A Novel Collaborative Optimization Model for Job Shop Production–Delivery Considering Time Window and Carbon Emission," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    19. Jin Huang & Liangliang Jin & Chaoyong Zhang, 2017. "Mathematical Modeling and a Hybrid NSGA-II Algorithm for Process Planning Problem Considering Machining Cost and Carbon Emission," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    20. Linda Zhang & Carman K.M. Lee & Pervaiz Akhtar, 2020. "Towards customization: Evaluation of integrated sales, product, and production configuration," Post-Print hal-03276827, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:502-:d:199012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.