A Novel Modified Discrete Differential Evolution Algorithm to Solve the Operations Sequencing Problem in CAPP Systems
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yuliang Su & Xuening Chu & Dongping Chen & Xiwu Sun, 2018. "A genetic algorithm for operation sequencing in CAPP using edge selection based encoding strategy," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 313-332, February.
- Jianping Dou & Jun Li & Chun Su, 2018. "A discrete particle swarm optimisation for operation sequencing in CAPP," International Journal of Production Research, Taylor & Francis Journals, vol. 56(11), pages 3795-3814, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abdullah Falih & Ahmed Z. M. Shammari, 2020. "Hybrid constrained permutation algorithm and genetic algorithm for process planning problem," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1079-1099, June.
- Luo, Kaiping & Shen, Guangya & Li, Liheng & Sun, Jianfei, 2023. "0-1 mathematical programming models for flexible process planning," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1160-1175.
- Yuming Guo, 2023. "Towards the efficient generation of variant design in product development networks: network nodes importance based product configuration evaluation approach," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 615-631, February.
- Chunghun Ha, 2020. "Evolving ant colony system for large-sized integrated process planning and scheduling problem considering sequence-dependent setup times," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 523-560, September.
- Hyun Cheol Lee & Chunghun Ha, 2019. "Sustainable Integrated Process Planning and Scheduling Optimization Using a Genetic Algorithm with an Integrated Chromosome Representation," Sustainability, MDPI, vol. 11(2), pages 1-23, January.
More about this item
Keywords
Discrete Differential Evolution; operation sequencing; statistical method based on quantiles; combinatorial optimisation; feasible operation sequences;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1846-:d:1414462. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.