IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v93y2020ics0305048318306698.html
   My bibliography  Save this article

Decomposition algorithms for the integrated process planning and scheduling problem

Author

Listed:
  • Barzanji, Ramin
  • Naderi, Bahman
  • Begen, Mehmet A.

Abstract

There are several algorithms to solve the integrated process planning and scheduling (IPPS) problem (i.e., flexible job shop scheduling with process plan flexibility) in the literature. All the existing algorithms for IPPS are heuristic-based search methods and no research has investigated the use of exact solution methods for this problem. We develop several decomposition approaches based on the logic-based Benders decomposition (LBBD) algorithm. Our LBBD algorithm allows us to partition the decision variables in the IPPS problem into two models, master-problem and sub-problem. The master-problem determines process plan and operation-machine assignment, while the sub-problem optimizes sequencing and scheduling decisions. To achieve faster convergence, we develop two relaxations for the optimal makespan objective function and incorporate them into the master-problem. We analyze the performance and further enhance the algorithm with two ideas, a Benders optimality cut based on the critical path and a faster heuristic way to solve the sub-problem. 16 standard benchmark instances available in the literature are solved to evaluate and compare the performances of our algorithms with those of the state-of-the-art methods in the literature. The proposed algorithm either results in the optimal solution or improves the best-known solutions in all the existing instances, demonstrating its superiority to the existing state-of-the-art methods in literature.

Suggested Citation

  • Barzanji, Ramin & Naderi, Bahman & Begen, Mehmet A., 2020. "Decomposition algorithms for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 93(C).
  • Handle: RePEc:eee:jomega:v:93:y:2020:i:c:s0305048318306698
    DOI: 10.1016/j.omega.2019.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048318306698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2019.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    2. Wheatley, David & Gzara, Fatma & Jewkes, Elizabeth, 2015. "Logic-based Benders decomposition for an inventory-location problem with service constraints," Omega, Elsevier, vol. 55(C), pages 10-23.
    3. Zhang, Luping & Wong, T.N., 2015. "An object-coding genetic algorithm for integrated process planning and scheduling," European Journal of Operational Research, Elsevier, vol. 244(2), pages 434-444.
    4. Kis, Tamas, 2003. "Job-shop scheduling with processing alternatives," European Journal of Operational Research, Elsevier, vol. 151(2), pages 307-332, December.
    5. J. Carlier & E. Pinson, 1989. "An Algorithm for Solving the Job-Shop Problem," Management Science, INFORMS, vol. 35(2), pages 164-176, February.
    6. Liangliang Jin & Qiuhua Tang & Chaoyong Zhang & Xinyu Shao & Guangdong Tian, 2016. "More MILP models for integrated process planning and scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4387-4402, July.
    7. Mariel, Katharina & Minner, Stefan, 2017. "Benders decomposition for a strategic network design problem under NAFTA local content requirements," Omega, Elsevier, vol. 68(C), pages 62-75.
    8. Bukchin, Yossi & Raviv, Tal, 2018. "Constraint programming for solving various assembly line balancing problems," Omega, Elsevier, vol. 78(C), pages 57-68.
    9. Li, Xinyu & Shao, Xinyu & Gao, Liang & Qian, Weirong, 2010. "An effective hybrid algorithm for integrated process planning and scheduling," International Journal of Production Economics, Elsevier, vol. 126(2), pages 289-298, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nascimento, Paulo Jorge & Silva, Cristóvão & Antunes, Carlos Henggeler & Moniz, Samuel, 2024. "Optimal decomposition approach for solving large nesting and scheduling problems of additive manufacturing systems," European Journal of Operational Research, Elsevier, vol. 317(1), pages 92-110.
    2. Marcela Brauner & Nicola Naismith & Ali GhaffarianHoseini, 2021. "System Approach in Complex Integral Design Methodology and Its Application in New Zealand," Sustainability, MDPI, vol. 13(11), pages 1-25, June.
    3. Rohaninejad, Mohammad & Hanzálek, Zdeněk, 2023. "Multi-level lot-sizing and job shop scheduling with lot-streaming: Reformulation and solution approaches," International Journal of Production Economics, Elsevier, vol. 263(C).
    4. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    5. Mina Roohnavazfar & Seyed Hamid Reza Pasandideh, 2022. "Decomposition algorithm for the multi-trip single vehicle routing problem with AND-type precedence constraints," Operational Research, Springer, vol. 22(4), pages 4253-4285, September.
    6. Naderi, Bahman & Begen, Mehmet A. & Zaric, Gregory S. & Roshanaei, Vahid, 2023. "A novel and efficient exact technique for integrated staffing, assignment, routing, and scheduling of home care services under uncertainty," Omega, Elsevier, vol. 116(C).
    7. Zhu, Xuedong & Son, Junbo & Zhang, Xi & Wu, Jianguo, 2023. "Constraint programming and logic-based Benders decomposition for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 117(C).
    8. Caglar Gencosman, Burcu & Begen, Mehmet A., 2022. "Exact optimization and decomposition approaches for shelf space allocation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 432-447.
    9. Wenkang Zhang & Yufan Zheng & Rafiq Ahmad, 2023. "The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2963-2988, October.
    10. Hassan Zohali & Bahman Naderi & Vahid Roshanaei, 2022. "Solving the Type-2 Assembly Line Balancing with Setups Using Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 315-332, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Xuedong & Son, Junbo & Zhang, Xi & Wu, Jianguo, 2023. "Constraint programming and logic-based Benders decomposition for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 117(C).
    2. Hassan Zohali & Bahman Naderi & Vahid Roshanaei, 2022. "Solving the Type-2 Assembly Line Balancing with Setups Using Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 315-332, January.
    3. Jin Huang & Liangliang Jin & Chaoyong Zhang, 2017. "Mathematical Modeling and a Hybrid NSGA-II Algorithm for Process Planning Problem Considering Machining Cost and Carbon Emission," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    4. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    5. Xu Zhang & Zhixue Liao & Lichao Ma & Jin Yao, 2022. "Hierarchical multistrategy genetic algorithm for integrated process planning and scheduling," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 223-246, January.
    6. Zhang, Yuankai & Lin, Wei-Hua & Huang, Minfang & Hu, Xiangpei, 2021. "Multi-warehouse package consolidation for split orders in online retailing," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1040-1055.
    7. S. Zhang & T. N. Wong, 2018. "Integrated process planning and scheduling: an enhanced ant colony optimization heuristic with parameter tuning," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 585-601, March.
    8. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    9. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David R., 2020. "Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling," Omega, Elsevier, vol. 93(C).
    10. Roshanaei, Vahid & Naderi, Bahman, 2021. "Solving integrated operating room planning and scheduling: Logic-based Benders decomposition versus Branch-Price-and-Cut," European Journal of Operational Research, Elsevier, vol. 293(1), pages 65-78.
    11. Gohram Baloch & Fatma Gzara, 2020. "Strategic Network Design for Parcel Delivery with Drones Under Competition," Transportation Science, INFORMS, vol. 54(1), pages 204-228, January.
    12. Hyun Cheol Lee & Chunghun Ha, 2019. "Sustainable Integrated Process Planning and Scheduling Optimization Using a Genetic Algorithm with an Integrated Chromosome Representation," Sustainability, MDPI, vol. 11(2), pages 1-23, January.
    13. Dauzère-Pérès, Stéphane & Ding, Junwen & Shen, Liji & Tamssaouet, Karim, 2024. "The flexible job shop scheduling problem: A review," European Journal of Operational Research, Elsevier, vol. 314(2), pages 409-432.
    14. Hooshmand, F. & Mirarabrazi, F. & MirHassani, S.A., 2020. "Efficient Benders decomposition for distance-based critical node detection problem," Omega, Elsevier, vol. 93(C).
    15. Servranckx, Tom & Vanhoucke, Mario, 2019. "Strategies for project scheduling with alternative subgraphs under uncertainty: similar and dissimilar sets of schedules," European Journal of Operational Research, Elsevier, vol. 279(1), pages 38-53.
    16. Gueret, Christelle & Jussien, Narendra & Prins, Christian, 2000. "Using intelligent backtracking to improve branch-and-bound methods: An application to Open-Shop problems," European Journal of Operational Research, Elsevier, vol. 127(2), pages 344-354, December.
    17. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    18. Pan, Yunpeng & Shi, Leyuan, 2006. "Branch-and-bound algorithms for solving hard instances of the one-machine sequencing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 1030-1039, February.
    19. Boxuan Zhao & Jianmin Gao & Kun Chen & Ke Guo, 2018. "Two-generation Pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 93-108, January.
    20. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:93:y:2020:i:c:s0305048318306698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.