IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6181-d450458.html
   My bibliography  Save this article

Multi-Objective Optimization of Integrated Process Planning and Scheduling Considering Energy Savings

Author

Listed:
  • Xu Zhang

    (Business School, Sichuan University, Chengdu 610064, China)

  • Hua Zhang

    (School of Economics and Management, Zhaoqing University, Zhaoqing 526061, China)

  • Jin Yao

    (School of Mechanical Engineering, Sichuan University, Chengdu 610064, China)

Abstract

With the emergence of the concept of green manufacturing, more manufacturers have attached importance to energy consumption indicators. The process planning and shop scheduling procedures involved in manufacturing processes can both independently achieve energy savings, however independent optimization approaches limit the optimization space. In order to achieve a better optimization effect, the optimization of energy savings for integrated process planning and scheduling (IPPS) was studied in this paper. A mathematical model for multi-objective optimization of IPPS was established to minimize the total energy consumption, makespan, and peak power of the job shop. A hierarchical multi-strategy genetic algorithm based on non-dominated sorting (NSHMSGA) was proposed to solve the problem. This algorithm was based on the non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) framework, in which an improved hierarchical coding method is used, containing a variety of genetic operators with different strategies, and in which a population degradation mechanism based on crowding distance is adopted. The results from the case study in this paper showed that the proposed method reduced the energy consumption by approximately 15% for two different scheduling schemes with the same makespan. The computational results for NSHMSGA and NSGA-Ⅱ approaches were evaluated quantitatively in the case study. The C-metric values for NSHMSGA and NSGA-Ⅱ were 0.78 and 0, the spacing metric values were 0.4724 and 0.5775, and the maximum spread values were 1.6404 and 1.3351, respectively. The evaluation indexes showed that the NSHMSGA approach could obtain a better non-dominated solution set than the NSGA-Ⅱ approach in order to solve the multi-objective IPPS problem proposed in this paper.

Suggested Citation

  • Xu Zhang & Hua Zhang & Jin Yao, 2020. "Multi-Objective Optimization of Integrated Process Planning and Scheduling Considering Energy Savings," Energies, MDPI, vol. 13(23), pages 1-31, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6181-:d:450458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gökan May & Bojan Stahl & Marco Taisch & Vittal Prabhu, 2015. "Multi-objective genetic algorithm for energy-efficient job shop scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 7071-7089, December.
    2. Zhang, Luping & Wong, T.N., 2015. "An object-coding genetic algorithm for integrated process planning and scheduling," European Journal of Operational Research, Elsevier, vol. 244(2), pages 434-444.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimo Bertolini & Francesco Leali & Davide Mezzogori & Cristina Renzi, 2023. "A Keyword, Taxonomy and Cartographic Research Review of Sustainability Concepts for Production Scheduling in Manufacturing Systems," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    2. Paweł Ocłoń & Maciej Ławryńczuk & Marek Czamara, 2021. "A New Solar Assisted Heat Pump System with Underground Energy Storage: Modelling and Optimisation," Energies, MDPI, vol. 14(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Ren & Yan Zhang & Shuenn-Ren Cheng & Chin-Chia Wu & Meng Zhang & Bo-yu Chang & Xin-yue Wang & Peng Zhao, 2020. "Effective Heuristic Algorithms Solving the Jobshop Scheduling Problem with Release Dates," Mathematics, MDPI, vol. 8(8), pages 1-25, July.
    2. Beck, Fabian G. & Biel, Konstantin & Glock, Christoph H., 2019. "Integration of energy aspects into the economic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 399-410.
    3. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    4. Panda, Debashish & Ramteke, Manojkumar, 2019. "Preventive crude oil scheduling under demand uncertainty using structure adapted genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 68-82.
    5. Zhu, Xuedong & Son, Junbo & Zhang, Xi & Wu, Jianguo, 2023. "Constraint programming and logic-based Benders decomposition for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 117(C).
    6. Jin Huang & Liangliang Jin & Chaoyong Zhang, 2017. "Mathematical Modeling and a Hybrid NSGA-II Algorithm for Process Planning Problem Considering Machining Cost and Carbon Emission," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    7. Li, Lei & Huang, Haihong & Zou, Xiang & Zhao, Fu & Li, Guishan & Liu, Zhifeng, 2021. "An energy-efficient service-oriented energy supplying system and control for multi-machine in the production line," Applied Energy, Elsevier, vol. 286(C).
    8. Zhang, Haowei & Xie, Junwei & Ge, Jiaang & Zhang, Zhaojian & Zong, Binfeng, 2019. "A hybrid adaptively genetic algorithm for task scheduling problem in the phased array radar," European Journal of Operational Research, Elsevier, vol. 272(3), pages 868-878.
    9. Alexander Hübner & Fabian Schäfer & Kai N. Schaal, 2020. "Maximizing Profit via Assortment and Shelf‐Space Optimization for Two‐Dimensional Shelves," Production and Operations Management, Production and Operations Management Society, vol. 29(3), pages 547-570, March.
    10. May, Gökan & Stahl, Bojan & Taisch, Marco, 2016. "Energy management in manufacturing: Toward eco-factories of the future – A focus group study," Applied Energy, Elsevier, vol. 164(C), pages 628-638.
    11. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    12. Zhou, Shengchao & Jin, Mingzhou & Du, Ni, 2020. "Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times," Energy, Elsevier, vol. 209(C).
    13. Yongkai An & Wenxi Lu & Weiguo Cheng, 2015. "Surrogate Model Application to the Identification of Optimal Groundwater Exploitation Scheme Based on Regression Kriging Method—A Case Study of Western Jilin Province," IJERPH, MDPI, vol. 12(8), pages 1-22, July.
    14. Favi, Claudio & Marconi, Marco & Mandolini, Marco & Germani, Michele, 2022. "Sustainable life cycle and energy management of discrete manufacturing plants in the industry 4.0 framework," Applied Energy, Elsevier, vol. 312(C).
    15. Yicong Gao & Qirui Wang & Yixiong Feng & Hao Zheng & Bing Zheng & Jianrong Tan, 2018. "An Energy-Saving Optimization Method of Dynamic Scheduling for Disassembly Line," Energies, MDPI, vol. 11(5), pages 1-18, May.
    16. Anghinolfi, Davide & Paolucci, Massimo & Ronco, Roberto, 2021. "A bi-objective heuristic approach for green identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 289(2), pages 416-434.
    17. Min Dai & Ziwei Zhang & Adriana Giret & Miguel A. Salido, 2019. "An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints," Sustainability, MDPI, vol. 11(11), pages 1-23, May.
    18. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    19. Abdolreza Roshani & Massimo Paolucci & Davide Giglio & Melissa Demartini & Flavio Tonelli & Maxim A. Dulebenets, 2023. "The capacitated lot-sizing and energy efficient single machine scheduling problem with sequence dependent setup times and costs in a closed-loop supply chain network," Annals of Operations Research, Springer, vol. 321(1), pages 469-505, February.
    20. Zhang, Liping & Tang, Qiuhua & Wu, Zhengjia & Wang, Fang, 2017. "Mathematical modeling and evolutionary generation of rule sets for energy-efficient flexible job shops," Energy, Elsevier, vol. 138(C), pages 210-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6181-:d:450458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.