IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v126y2010i2p289-298.html
   My bibliography  Save this article

An effective hybrid algorithm for integrated process planning and scheduling

Author

Listed:
  • Li, Xinyu
  • Shao, Xinyu
  • Gao, Liang
  • Qian, Weirong

Abstract

Process planning and scheduling are two of the most important functions in the manufacturing system. Traditionally, process planning and scheduling were regarded as separate tasks performed sequentially, where scheduling was implemented after process plans had been generated. However, their functions are usually complementary. If the two systems can be integrated more tightly, greater performance and higher productivity of manufacturing system can be achieved. In this paper, a new hybrid algorithm (HA) based approach has been developed to facilitate the integration and optimization of these two systems. To improve the optimization performance of the approach, an efficient genetic representation, operator and local search strategy have been developed. Experimental studies have been used to test the performance of the proposed approach and to make comparisons between this approach and some previous works. The results show that the research on integrated process planning and scheduling (IPPS) is necessary and the proposed approach is a promising and very effective method on the research of IPPS.

Suggested Citation

  • Li, Xinyu & Shao, Xinyu & Gao, Liang & Qian, Weirong, 2010. "An effective hybrid algorithm for integrated process planning and scheduling," International Journal of Production Economics, Elsevier, vol. 126(2), pages 289-298, August.
  • Handle: RePEc:eee:proeco:v:126:y:2010:i:2:p:289-298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(10)00121-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomalla, Christoph S., 2001. "Job shop scheduling with alternative process plans," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 125-134, December.
    2. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    3. Anosike, A.I. & Zhang, D.Z., 2009. "An agent-based approach for integrating manufacturing operations," International Journal of Production Economics, Elsevier, vol. 121(2), pages 333-352, October.
    4. Wahab, M.I.M. & Stoyan, S.J., 2008. "A dynamic approach to measure machine and routing flexibilities of manufacturing systems," International Journal of Production Economics, Elsevier, vol. 113(2), pages 895-913, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Luping & Wong, T.N., 2015. "An object-coding genetic algorithm for integrated process planning and scheduling," European Journal of Operational Research, Elsevier, vol. 244(2), pages 434-444.
    2. Ma, Yujie & Du, Gang & Jiao, Roger J., 2020. "Optimal crowdsourcing contracting for reconfigurable process planning in open manufacturing: A bilevel coordinated optimization approach," International Journal of Production Economics, Elsevier, vol. 228(C).
    3. Boxuan Zhao & Jianmin Gao & Kun Chen & Ke Guo, 2018. "Two-generation Pareto ant colony algorithm for multi-objective job shop scheduling problem with alternative process plans and unrelated parallel machines," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 93-108, January.
    4. Zhang, Linda L. & Lee, Carman K.M. & Akhtar, Pervaiz, 2020. "Towards customization: Evaluation of integrated sales, product, and production configuration," International Journal of Production Economics, Elsevier, vol. 229(C).
    5. Xu Zhang & Zhixue Liao & Lichao Ma & Jin Yao, 2022. "Hierarchical multistrategy genetic algorithm for integrated process planning and scheduling," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 223-246, January.
    6. Linda Zhang & Carman K.M. Lee & Pervaiz Akhtar, 2020. "Towards customization: Evaluation of integrated sales, product, and production configuration," Post-Print hal-03276827, HAL.
    7. Xue, Guisen & Felix Offodile, O. & Zhou, Hong & Troutt, Marvin D., 2011. "Integrated production planning with sequence-dependent family setup times," International Journal of Production Economics, Elsevier, vol. 131(2), pages 674-681, June.
    8. Hyun Cheol Lee & Chunghun Ha, 2019. "Sustainable Integrated Process Planning and Scheduling Optimization Using a Genetic Algorithm with an Integrated Chromosome Representation," Sustainability, MDPI, vol. 11(2), pages 1-23, January.
    9. S. Zhang & T. N. Wong, 2018. "Integrated process planning and scheduling: an enhanced ant colony optimization heuristic with parameter tuning," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 585-601, March.
    10. Barzanji, Ramin & Naderi, Bahman & Begen, Mehmet A., 2020. "Decomposition algorithms for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 93(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Groflin, Heinz & Klinkert, Andreas, 2007. "Feasible insertions in job shop scheduling, short cycles and stable sets," European Journal of Operational Research, Elsevier, vol. 177(2), pages 763-785, March.
    2. Seebacher, Gottfried & Winkler, Herwig, 2014. "Evaluating flexibility in discrete manufacturing based on performance and efficiency," International Journal of Production Economics, Elsevier, vol. 153(C), pages 340-351.
    3. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    4. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    5. Enrico Teich & Thorsten Claus, 2017. "Measurement of Load and Capacity Flexibility in Manufacturing," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(4), pages 291-302, December.
    6. Jiae Zhang & Jianjun Yang, 2016. "Flexible job-shop scheduling with flexible workdays, preemption, overlapping in operations and satisfaction criteria: an industrial application," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4894-4918, August.
    7. Buscher, Udo & Shen, Liji, 2009. "An integrated tabu search algorithm for the lot streaming problem in job shops," European Journal of Operational Research, Elsevier, vol. 199(2), pages 385-399, December.
    8. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    9. Pempera, Jaroslaw & Smutnicki, Czeslaw, 2018. "Open shop cyclic scheduling," European Journal of Operational Research, Elsevier, vol. 269(2), pages 773-781.
    10. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    11. Karen Aardal & Cor Hurkens & Jan Karel Lenstra & Sergey Tiourine, 2002. "Algorithms for Radio Link Frequency Assignment: The Calma Project," Operations Research, INFORMS, vol. 50(6), pages 968-980, December.
    12. Tomino, Takahiro & Park, Youngwon & Hong, Paul & Roh, James Jungbae, 2009. "Market flexible customizing system (MFCS) of Japanese vehicle manufacturers: An analysis of Toyota, Nissan and Mitsubishi," International Journal of Production Economics, Elsevier, vol. 118(2), pages 375-386, April.
    13. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    14. Ansis Ozolins, 2020. "Bounded dynamic programming algorithm for the job shop problem with sequence dependent setup times," Operational Research, Springer, vol. 20(3), pages 1701-1728, September.
    15. Philippe Lacomme & Aziz Moukrim & Alain Quilliot & Marina Vinot, 2019. "Integration of routing into a resource-constrained project scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 421-464, December.
    16. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    17. Liaw, Ching-Fang, 2000. "A hybrid genetic algorithm for the open shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 124(1), pages 28-42, July.
    18. M. Hajibabaei & J. Behnamian, 2023. "Fuzzy cleaner production in assembly flexible job-shop scheduling with machine breakdown and batch transportation: Lagrangian relaxation," Journal of Combinatorial Optimization, Springer, vol. 45(5), pages 1-26, July.
    19. Baykasoglu, Adil & ÖzbakIr, Lale, 2010. "Analyzing the effect of dispatching rules on the scheduling performance through grammar based flexible scheduling system," International Journal of Production Economics, Elsevier, vol. 124(2), pages 369-381, April.
    20. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:126:y:2010:i:2:p:289-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.