IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7170-d298047.html
   My bibliography  Save this article

Evaluation of Anaerobic Co-Digestion to Enhance the Efficiency of Livestock Manure Anaerobic Digestion

Author

Listed:
  • Jae Hoon Jeung

    (Department of Environmental Energy Engineering, Graduate School of Kyonggi University, Suwon 16227, Korea
    These authors contributed equally to the manuscript.)

  • Woo Jin Chung

    (Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
    These authors contributed equally to the manuscript.)

  • Soon Woong Chang

    (Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
    These authors contributed equally to the manuscript.)

Abstract

In this paper, the anaerobic co-digestion of three different organic wastes, including livestock manure, slaughterhouse waste, and agricultural by-products (ABs), was carried out to enhance the efficiency of mono-digestion of livestock manure. The characteristics of co-digestion were evaluated at different mixing ratios. The experiment was performed using the Batch test and was divided into two parts. The first experimental section (EXP. 1) was designed to evaluate the seasonal characteristics of ABs, which are the different ratios of fruits and vegetables, where the mixing ratio of spring (fruits:vegetables = 3:7) showed the highest biogas yield (0.24 m 3 /kg volatile solids). The second experiment (EXP. 2) was conducted by using ABs in the ratio that gave the highest biogas yield in EXP. 1 in combinations of three wastes livestock manure, slaughterhouse waste, and ABs. The highest CH 4 yield was 0.84 m 3 /kg volatile solids (VS), which was obtained with a mixing ratio that had even amounts of the three feedstocks. In addition, the results of the second biochemical methane potential test, which assessed the digestive efficiency according to the mixing ratio of the three types of organic waste, showed that the CH 4 production rate of the merged digestion was approximately 1.03–1.29 times higher than that of the mono-digestion of livestock manure. The results of our experiment were verified using the modified Gompertz model, the results of which were relatively similar to the experimental results.

Suggested Citation

  • Jae Hoon Jeung & Woo Jin Chung & Soon Woong Chang, 2019. "Evaluation of Anaerobic Co-Digestion to Enhance the Efficiency of Livestock Manure Anaerobic Digestion," Sustainability, MDPI, vol. 11(24), pages 1-12, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7170-:d:298047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sanjaya, Adhitya Pitara & Cahyanto, Muhammad Nur & Millati, Ria, 2016. "Mesophilic batch anaerobic digestion from fruit fragments," Renewable Energy, Elsevier, vol. 98(C), pages 135-141.
    2. Alvarez, René & Lidén, Gunnar, 2008. "Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste," Renewable Energy, Elsevier, vol. 33(4), pages 726-734.
    3. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    4. Lora Grando, Rafaela & de Souza Antune, Adelaide Maria & da Fonseca, Fabiana Valéria & Sánchez, Antoni & Barrena, Raquel & Font, Xavier, 2017. "Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 44-53.
    5. Liao, Xiaocong & Li, Huan, 2015. "Biogas production from low-organic-content sludge using a high-solids anaerobic digester with improved agitation," Applied Energy, Elsevier, vol. 148(C), pages 252-259.
    6. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    7. Li, Kun & Liu, Ronghou & Cui, Shaofeng & Yu, Qiong & Ma, Ruijie, 2018. "Anaerobic co-digestion of animal manures with corn stover or apple pulp for enhanced biogas production," Renewable Energy, Elsevier, vol. 118(C), pages 335-342.
    8. Al-Hamamre, Zayed & Saidan, Motasem & Hararah, Muhanned & Rawajfeh, Khaled & Alkhasawneh, Hussam E. & Al-Shannag, Mohammad, 2017. "Wastes and biomass materials as sustainable-renewable energy resources for Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 295-314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emilia Paone & Filippo Fazzino & Daniela Maria Pizzone & Antonino Scurria & Mario Pagliaro & Rosaria Ciriminna & Paolo Salvatore Calabrò, 2021. "Towards the Anchovy Biorefinery: Biogas Production from Anchovy Processing Waste after Fish Oil Extraction with Biobased Limonene," Sustainability, MDPI, vol. 13(5), pages 1-12, February.
    2. Khuthadzo Mudzanani & Esta van Heerden & Ryneth Mbhele & Michael O. Daramola, 2021. "Enhancement of Biogas Production via Co-Digestion of Wastewater Treatment Sewage Sludge and Brewery Spent Grain: Physicochemical Characterization and Microbial Community," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    3. Ankita Bhowmik & Shantanu Bhunia & Anupam Debsarkar & Rambilash Mallick & Malancha Roy & Joydeep Mukherjee, 2021. "Development of a Novel Helical-Ribbon Mixer Dryer for Conversion of Rural Slaughterhouse Wastes to an Organic Fertilizer and Implications in the Rural Circular Economy," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    4. Ashma Subedi & Bivek Baral, 2021. "Evaluation of Various Biomass Feedstocks for Biogas Generation at Psychrophilic and Mesophilic Temperatures at Higher Altitudes of Nepal," Journal of Development Innovations, KarmaQuest International, vol. 5(1), pages 46-62, June.
    5. Hossain, Md. Sanowar & Masuk, Nahid Imtiaz & Das, Barun K. & Das, Arnob & Kibria, Md. Golam & Chowdhury, Miftahul Mobin & Shozib, Imtiaz Ahmed, 2023. "Theoretical estimation of energy potential and environmental emissions mitigation for major livestock manure in Bangladesh," Renewable Energy, Elsevier, vol. 217(C).
    6. Rajesh Nandi & Chayan Kumer Saha & Shiplu Sarker & Md. Sanaul Huda & Md. Monjurul Alam, 2020. "Optimization of Reactor Temperature for Continuous Anaerobic Digestion of Cow Manure: Bangladesh Perspective," Sustainability, MDPI, vol. 12(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tariq Alkhrissat & Ghada Kassab & Mu’tasim Abdel-Jaber, 2023. "Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge," Energies, MDPI, vol. 16(15), pages 1-17, August.
    2. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Bipasyana Dhungana & Sunil Prasad Lohani & Michael Marsolek, 2022. "Anaerobic Co-Digestion of Food Waste with Livestock Manure at Ambient Temperature: A Biogas Based Circular Economy and Sustainable Development Goals," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    6. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    8. Brémond, Ulysse & Bertrandias, Aude & Loisel, Denis & Jimenez, Julie & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2020. "Assessment of fungal and thermo-alkaline post-treatments of solid digestate in a recirculation scheme to increase flexibility in feedstocks supply management of biogas plants," Renewable Energy, Elsevier, vol. 149(C), pages 641-651.
    9. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    10. Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015. "Forecasting the price of gold using dynamic model averaging," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
    11. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    12. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    13. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    14. Ritter, Hendrik & Zimmermann, Karl, 2019. "Cap-and-Trade Policy vs. Carbon Taxation: Of Leakage and Linkage," EconStor Preprints 197796, ZBW - Leibniz Information Centre for Economics.
    15. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    16. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    17. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    18. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2016. "A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 961-977.
    19. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. de Castro, Thiago Morais & Arantes, Eudes José & de Mendonça Costa, Mônica Sarolli Silva & Gotardo, Jackeline Tatiane & Passig, Fernando Hermes & de Carvalho, Karina Querne & Gomes, Simone Damasceno, 2021. "Anaerobic co-digestion of industrial waste landfill leachate and glycerin in a continuous anaerobic bioreactor with a fixed-structured bed (ABFSB): Effects of volumetric organic loading rate and alkal," Renewable Energy, Elsevier, vol. 164(C), pages 1436-1446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7170-:d:298047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.