IDEAS home Printed from https://ideas.repec.org/a/kqi/journl/2021-5-1-4.html
   My bibliography  Save this article

Evaluation of Various Biomass Feedstocks for Biogas Generation at Psychrophilic and Mesophilic Temperatures at Higher Altitudes of Nepal

Author

Listed:
  • Ashma Subedi

    (Department of Environment Science and Engineering, Kathmandu University, Nepal)

  • Bivek Baral

    (Department of Mechanical Engineering, School of Engineering, Kathmandu University, Nepal)

Abstract

This study aimed at testing the feasibility of different animal manures as a substrate for biogas production at psychrophilic and mesophilic temperatures. Anaerobic digestion of animal manure at psychrophilic and mesophilic temperatures has not yet been explored in the higher altitudes in Nepal (> 3,000 meters above sea level), probably due to less effective biogas yield as cold temperature retards the growth rate of the microbes responsible for anaerobic digestion. A lab-scale anaerobic digester was constructed to run on a continuous mode process. Methane production from five different substrates, i.e., cow dung, horse dung, sheep dung, human feces, and co-digestion (combination of those substrates) was conducted at four different temperatures, i.e., 10°C, 17°C, 30°C, and 40°C, for three months. The study assessed the type of feed used in anaerobic digesters for biogas production at different temperature ranges. The results obtained reflected that the highest biogas yield potential lied in sheep dung followed by cow dung and then a combination of substrates in all the four temperatures. This study provided scientific evidence for establishing a waste based technology at higher altitudes for the production of biogas to address challenges in the energy sector and promote sustainable development.

Suggested Citation

  • Ashma Subedi & Bivek Baral, 2021. "Evaluation of Various Biomass Feedstocks for Biogas Generation at Psychrophilic and Mesophilic Temperatures at Higher Altitudes of Nepal," Journal of Development Innovations, KarmaQuest International, vol. 5(1), pages 46-62, June.
  • Handle: RePEc:kqi:journl:2021-5-1-4
    as

    Download full text from publisher

    File URL: https://www.karmaquest.org/journal/index.php/ILGDI/article/view/71/61
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katuwal, Hari & Bohara, Alok K., 2009. "Biogas: A promising renewable technology and its impact on rural households in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2668-2674, December.
    2. Jae Hoon Jeung & Woo Jin Chung & Soon Woong Chang, 2019. "Evaluation of Anaerobic Co-Digestion to Enhance the Efficiency of Livestock Manure Anaerobic Digestion," Sustainability, MDPI, vol. 11(24), pages 1-12, December.
    3. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    2. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    3. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    4. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Frempong, Raymond Boadi & Orkoh, Emmanuel & Kofinti, Raymond Elikplim, 2021. "Household's use of cooking gas and Children's learning outcomes in rural Ghana," Energy Economics, Elsevier, vol. 103(C).
    6. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    7. Prashamsa Thapa & Brijesh Mainali & Shobhakar Dhakal, 2023. "Focus on Climate Action: What Level of Synergy and Trade-Off Is There between SDG 13; Climate Action and Other SDGs in Nepal?," Energies, MDPI, vol. 16(1), pages 1-32, January.
    8. Rahman, Md. Mizanur & Hasan, Mohammad Mahmodul & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Hybrid application of biogas and solar resources to fulfill household energy needs: A potentially viable option in rural areas of developing countries," Renewable Energy, Elsevier, vol. 68(C), pages 35-45.
    9. Muhammad Arif Fikri Hamzah & Jamaliah Md Jahim & Peer Mohamed Abdul & Ahmad Jaril Asis, 2019. "Investigation of Temperature Effect on Start-Up Operation from Anaerobic Digestion of Acidified Palm Oil Mill Effluent," Energies, MDPI, vol. 12(13), pages 1-16, June.
    10. Ding, Wenguang & Wang, Lijun & Chen, Baoyu & Xu, Luan & Li, Haoxu, 2014. "Impacts of renewable energy on gender in rural communities of north-west China," Renewable Energy, Elsevier, vol. 69(C), pages 180-189.
    11. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    12. E. Somanathan & Randall Bluffstone, 2015. "Biogas: Clean Energy Access with Low-Cost Mitigation of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 265-277, October.
    13. Ricardo Situmeang & Jana Mazancová & Hynek Roubík, 2022. "Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia," Energies, MDPI, vol. 15(14), pages 1-16, July.
    14. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    15. Hossain, Md. Sanowar & Masuk, Nahid Imtiaz & Das, Barun K. & Das, Arnob & Kibria, Md. Golam & Chowdhury, Miftahul Mobin & Shozib, Imtiaz Ahmed, 2023. "Theoretical estimation of energy potential and environmental emissions mitigation for major livestock manure in Bangladesh," Renewable Energy, Elsevier, vol. 217(C).
    16. David Fangueiro & Paula Alvarenga & Rita Fragoso, 2021. "Horticulture and Orchards as New Markets for Manure Valorisation with Less Environmental Impacts," Sustainability, MDPI, vol. 13(3), pages 1-28, January.
    17. Garfí, Marianna & Martí-Herrero, Jaime & Garwood, Anna & Ferrer, Ivet, 2016. "Household anaerobic digesters for biogas production in Latin America: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 599-614.
    18. Roubík, Hynek & Mazancová, Jana & Phung, Le Dinh & Banout, Jan, 2018. "Current approach to manure management for small-scale Southeast Asian farmers - Using Vietnamese biogas and non-biogas farms as an example," Renewable Energy, Elsevier, vol. 115(C), pages 362-370.
    19. He, Pan & Veronesi, Marcella, 2017. "Personality traits and renewable energy technology adoption: A policy case study from China," Energy Policy, Elsevier, vol. 107(C), pages 472-479.
    20. Li, Changjiang & Liao, Yuncheng & Wen, Xiaoxia & Wang, Yangfeng & Yang, Fei, 2015. "The development and countermeasures of household biogas in northwest grain for green project areas of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 835-846.

    More about this item

    Keywords

    anaerobic digestion; co-digestion; mesophilic; methane; psychrophilic;
    All these keywords.

    JEL classification:

    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kqi:journl:2021-5-1-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bamadev Paudel (email available below). General contact details of provider: https://edirc.repec.org/data/sneeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.