Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Alekhina, Victoriia & Yoshino, Naoyuki, 2018. "Impact of World Oil Prices on an Energy Exporting Economy Including Monetary Policy," ADBI Working Papers 828, Asian Development Bank Institute.
- Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
- Christiane Baumeister & Lutz Kilian, 2016.
"Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us,"
Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 139-160, Winter.
- Baumeister, Christiane & Kilian, Lutz, 2015. "Forty years of oil price fluctuations: Why the price of oil may still surprise us," CFS Working Paper Series 525, Center for Financial Studies (CFS).
- Christiane Baumeister & Lutz Kilian, 2016. "Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us," CESifo Working Paper Series 5709, CESifo.
- Kilian, Lutz & Baumeister, Christiane, 2016. "Forty Years of Oil Price Fluctuations: Why the Price of Oil May Still Surprise Us," CEPR Discussion Papers 11035, C.E.P.R. Discussion Papers.
- Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
- Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
- Ghoddusi, Hamed & Creamer, Germán G. & Rafizadeh, Nima, 2019. "Machine learning in energy economics and finance: A review," Energy Economics, Elsevier, vol. 81(C), pages 709-727.
- Wang, Yudong & Wu, Chongfeng & Yang, Li, 2014. "Oil price shocks and agricultural commodity prices," Energy Economics, Elsevier, vol. 44(C), pages 22-35.
- Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
- Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad, 2017. "Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 258-279.
- Wachtmeister, Henrik & Henke, Petter & Höök, Mikael, 2018. "Oil projections in retrospect: Revisions, accuracy and current uncertainty," Applied Energy, Elsevier, vol. 220(C), pages 138-153.
- Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
- Squalli, Jay, 2007. "Electricity consumption and economic growth: Bounds and causality analyses of OPEC members," Energy Economics, Elsevier, vol. 29(6), pages 1192-1205, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abdullah Sultan Al Shammre & Benaissa Chidmi, 2023. "Oil Price Forecasting Using FRED Data: A Comparison between Some Alternative Models," Energies, MDPI, vol. 16(11), pages 1-24, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tarek Bouazizi & Zouhaier Hadhek & Fatma Mrad & Mosbah Lafi, 2021. "Changes in Demand for Crude Oil and its Correlation with Crude Oil and Stock Market Returns Volatilities: Evidence from Three Asian Oil Importing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 27-43.
- Costola, Michele & Lorusso, Marco, 2022.
"Spillovers among energy commodities and the Russian stock market,"
Journal of Commodity Markets, Elsevier, vol. 28(C).
- Costola, Michele & Lorusso, Marco, 2021. "Spillovers among Energy Commodities and the Russian Stock Market," MPRA Paper 108990, University Library of Munich, Germany.
- Radosław Puka & Bartosz Łamasz & Marek Michalski, 2021. "Effectiveness of Artificial Neural Networks in Hedging against WTI Crude Oil Price Risk," Energies, MDPI, vol. 14(11), pages 1-26, June.
- Dalheimer, Bernhard & Herwartz, Helmut & Lange, Alexander, 2021. "The threat of oil market turmoils to food price stability in Sub-Saharan Africa," Energy Economics, Elsevier, vol. 93(C).
- Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
- Wang, Fangzhi & Liao, Hua, 2022. "Unexpected economic growth and oil price shocks," Energy Economics, Elsevier, vol. 116(C).
- Qi Zhang & Yi Hu & Jianbin Jiao & Shouyang Wang, 2022. "Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(15), pages 1-22, August.
- Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
- Dervis Kirikkaleli & Hasan Güngör, 2021. "Co-movement of commodity price indexes and energy price index: a wavelet coherence approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
- Nguyen, Quyen & Diaz-Rainey, Ivan & Kuruppuarachchi, Duminda, 2021. "Predicting corporate carbon footprints for climate finance risk analyses: A machine learning approach," Energy Economics, Elsevier, vol. 95(C).
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Raghavan, Mala, 2020.
"An analysis of the global oil market using SVARMA models,"
Energy Economics, Elsevier, vol. 86(C).
- Mala Raghavan, 2019. "An analysis of the global oil market using SVARMA models," CAMA Working Papers 2019-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Raghavan, Mala, 2019. "An analysis of the global oil market using SVARMA models," Working Papers 2019-01, University of Tasmania, Tasmanian School of Business and Economics.
- He, Kaijian & Tso, Geoffrey K.F. & Zou, Yingchao & Liu, Jia, 2018. "Crude oil risk forecasting: New evidence from multiscale analysis approach," Energy Economics, Elsevier, vol. 76(C), pages 574-583.
- Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
- Piersanti, Giovanni & Piersanti, Mirko & Cicone, Antonio & Canofari, Paolo & Di Domizio, Marco, 2020. "An inquiry into the structure and dynamics of crude oil price using the fast iterative filtering algorithm," Energy Economics, Elsevier, vol. 92(C).
- Wang, Minggang & Zhao, Longfeng & Du, Ruijin & Wang, Chao & Chen, Lin & Tian, Lixin & Eugene Stanley, H., 2018. "A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 220(C), pages 480-495.
- Athanasia Dimitriadou & Periklis Gogas & Theophilos Papadimitriou & Vasilios Plakandaras, 2018. "Oil Market Efficiency under a Machine Learning Perspective," Forecasting, MDPI, vol. 1(1), pages 1-12, October.
- Meng, Juan & Nie, He & Mo, Bin & Jiang, Yonghong, 2020. "Risk spillover effects from global crude oil market to China’s commodity sectors," Energy, Elsevier, vol. 202(C).
- Abdollahi, Hooman & Ebrahimi, Seyed Babak, 2020. "A new hybrid model for forecasting Brent crude oil price," Energy, Elsevier, vol. 200(C).
- Cheng, Natalie Fang Ling & Hasanov, Akram Shavkatovich & Poon, Wai Ching & Bouri, Elie, 2023. "The US-China trade war and the volatility linkages between energy and agricultural commodities," Energy Economics, Elsevier, vol. 120(C).
More about this item
Keywords
crude oil purchase price; forecasting; ARIMA model; SARIMA model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4003-:d:827287. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.