IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v98y2016icp135-141.html
   My bibliography  Save this article

Mesophilic batch anaerobic digestion from fruit fragments

Author

Listed:
  • Sanjaya, Adhitya Pitara
  • Cahyanto, Muhammad Nur
  • Millati, Ria

Abstract

Fresh ripe and rotten fruits including oranges, mangosteen, bananas, and rambutan were separated into its fragments, i.e., peel, pulp, and seed in order to determine the rates and yield of their conversion into methane. Methane production from each of the components of the fruit was carried out under mesophilic conditions (35 °C) using 120 ml-glass serum bottles during 60 days of incubation. The effectiveness of the anaerobic digestion was expressed using the value of digestibility. The level of methane yield from the tested fruit fractions was in the order of seed > pulp > peel. The methane yields from the seed, pulp, and peel were in the range of 504.11 ± 21.15 to 657.89 ± 63.58 ml CH4/g VS, 287.89 ± 38.79 to 468.91 ± 27.62 ml CH4/g VS, and 0.00 ± 0.00 to 202.75 ± 40.86 ml CH4/g VS, respectively. The highest digestibility was obtained from the anaerobic digestion of the seed of mangosteen, which was 99.3% and 99.4% from the fresh ripe and rotten mangosteen, respectively. The lowest digestibility was obtained from the mangosteen peel, which was 0.00%. The chemical composition, the presence of flavor compounds, and the physical structure of the fruit fragments affect the methane production.

Suggested Citation

  • Sanjaya, Adhitya Pitara & Cahyanto, Muhammad Nur & Millati, Ria, 2016. "Mesophilic batch anaerobic digestion from fruit fragments," Renewable Energy, Elsevier, vol. 98(C), pages 135-141.
  • Handle: RePEc:eee:renene:v:98:y:2016:i:c:p:135-141
    DOI: 10.1016/j.renene.2016.02.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116301604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.02.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cirne, D.G. & Paloumet, X. & Björnsson, L. & Alves, M.M. & Mattiasson, B., 2007. "Anaerobic digestion of lipid-rich waste—Effects of lipid concentration," Renewable Energy, Elsevier, vol. 32(6), pages 965-975.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hongmei & Chen, Zhengjie & Ma, Wenhui & Cao, Shijie, 2022. "Effect of the reactive blend conditions on the thermal properties of waste biomass and soft coal as a reducing agent for silicon production," Renewable Energy, Elsevier, vol. 187(C), pages 302-319.
    2. Jae Hoon Jeung & Woo Jin Chung & Soon Woong Chang, 2019. "Evaluation of Anaerobic Co-Digestion to Enhance the Efficiency of Livestock Manure Anaerobic Digestion," Sustainability, MDPI, vol. 11(24), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez-Bayo, Alejandra & López-Chicharro, Daniel & Morales, Victoria & Espada, Juan José & Puyol, Daniel & Martínez, Fernando & Astals, Sergi & Vicente, Gemma & Bautista, Luis Fernando & Rodríguez, R, 2020. "Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach," Renewable Energy, Elsevier, vol. 146(C), pages 188-195.
    2. Li, Yangyang & Jin, Yiying & Li, Hailong & Borrion, Aiduan & Yu, Zhixin & Li, Jinhui, 2018. "Kinetic studies on organic degradation and its impacts on improving methane production during anaerobic digestion of food waste," Applied Energy, Elsevier, vol. 213(C), pages 136-147.
    3. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    4. Xiaolan Xiao & Wansheng Shi & Wenquan Ruan, 2019. "Effects of High Sludge Cycle Frequency on Performance and Syntrophic Metabolism of Anaerobic Membrane Bioreactor for Treating High-Lipid Kitchen Waste Slurry," Energies, MDPI, vol. 12(14), pages 1-13, July.
    5. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    6. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin & Nie, Yongfeng, 2017. "Effects of thermal pretreatment on degradation kinetics of organics during kitchen waste anaerobic digestion," Energy, Elsevier, vol. 118(C), pages 377-386.
    7. Chan, Pak Chuen & de Toledo, Renata Alves & Shim, Hojae, 2018. "Anaerobic co-digestion of food waste and domestic wastewater – Effect of intermittent feeding on short and long chain fatty acids accumulation," Renewable Energy, Elsevier, vol. 124(C), pages 129-135.
    8. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    9. Rafieenia, Razieh & Pivato, Alberto & Lavagnolo, Maria Cristina, 2019. "Optimization of hydrogen production from food waste using anaerobic mixed cultures pretreated with waste frying oil," Renewable Energy, Elsevier, vol. 139(C), pages 1077-1085.
    10. Xu, Fuqing & Okopi, Solomon Inalegwu & Jiang, Yongmei & Chen, Zhou & Meng, Liyun & Li, Yebo & Sun, Weimin & Li, Chaokun, 2022. "Multi-criteria assessment of food waste and waste paper anaerobic co-digestion: Effects of inoculation ratio, total solids content, and feedstock composition," Renewable Energy, Elsevier, vol. 194(C), pages 40-50.
    11. Naaz, Farah & Bhattacharya, Arghya & Pant, Kamal K. & Malik, Anushree, 2019. "Investigations on energy efficiency of biomethane/biocrude production from pilot scale wastewater grown algal biomass," Applied Energy, Elsevier, vol. 254(C).
    12. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    13. Neshat, Soheil A. & Mohammadi, Maedeh & Najafpour, Ghasem D. & Lahijani, Pooya, 2017. "Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 308-322.
    14. Mohammed Ali Musa & Syazwani Idrus & Che Man Hasfalina & Nik Norsyahariati Nik Daud, 2018. "Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate," IJERPH, MDPI, vol. 15(10), pages 1-19, October.
    15. Wang, Dong-Hui & Lian, Shu-Juan & Wang, Ruo-Nan & Zou, Hua & Guo, Rong-Bo & Fu, Shan-Fei, 2023. "Enhanced anaerobic digestion of food waste by metal cations and mechanisms analysis," Renewable Energy, Elsevier, vol. 218(C).
    16. O-Thong, Sompong & Boe, Kanokwan & Angelidaki, Irini, 2012. "Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production," Applied Energy, Elsevier, vol. 93(C), pages 648-654.
    17. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    18. do Carmo Precci Lopes, Alice & Mudadu Silva, Cláudio & Pereira Rosa, André & de Ávila Rodrigues, Fábio, 2018. "Biogas production from thermophilic anaerobic digestion of kraft pulp mill sludge," Renewable Energy, Elsevier, vol. 124(C), pages 40-49.
    19. Kinyua, Maureen N. & Rowse, Laurel E. & Ergas, Sarina J., 2016. "Review of small-scale tubular anaerobic digesters treating livestock waste in the developing world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 896-910.
    20. Ware, Aidan & Power, Niamh, 2017. "Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions," Renewable Energy, Elsevier, vol. 104(C), pages 50-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:98:y:2016:i:c:p:135-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.