IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5754-d277493.html
   My bibliography  Save this article

A New Eco-Friendly Porous Asphalt Mixture Modified by Crumb Rubber and Basalt Fiber

Author

Listed:
  • Yongchun Cheng

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Chao Chai

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Yuwei Zhang

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Yu Chen

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Bing Zhu

    (College of Transportation, Jilin University, Changchun 130025, China)

Abstract

In this paper, the performance of environmentally friendly porous asphalt mixture was optimized by the response surface method. Taking the asphalt-aggregate ratio, crumb-rubber content, and basalt fiber content as the independent variables, the air void, Marshall stability, flow value, Marshall quotient, and Cantabro particle loss are the response values. The best model was determined by fitting the experimental data. After the influence of the independent variables on the response values was clarified, the models were used to optimize the dosage of the asphalt, crumb rubber, and basalt fiber through comprehensive analysis. The results showed that the application of the response surface method can complete the establishment of the models and the optimization of the performance of the porous asphalt mixture with sufficient accuracy. The optimum dosage of the asphalt to aggregate ratio, crumb rubber, and basalt fiber is 4.51%, 11.21%, and 0.42%, respectively. The high-temperature stability, low-temperature crack resistance, water stability, and Cantabro particle loss resistance of the optimized porous asphalt mixture were effectively improved, which provides a reference for the construction of eco-friendly pavement.

Suggested Citation

  • Yongchun Cheng & Chao Chai & Yuwei Zhang & Yu Chen & Bing Zhu, 2019. "A New Eco-Friendly Porous Asphalt Mixture Modified by Crumb Rubber and Basalt Fiber," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5754-:d:277493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5754/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5754/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanbing Liu & Bing Zhu & Haibin Wei & Chao Chai & Yu Chen, 2019. "Laboratory Evaluation on the Performance of Porous Asphalt Mixture with Steel Slag for Seasonal Frozen Regions," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    2. Laura Moretti & Giuseppe Loprencipe, 2018. "Climate Change and Transport Infrastructures: State of the Art," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Chai & Yong-Chun Cheng & Yuwei Zhang & Yu Chen & Bing Zhu, 2020. "Experimental Study on the Performance Decay of Permeable Asphalt Mixture in Seasonally Frozen Regions under Freeze-Thaw Cycles," Sustainability, MDPI, vol. 12(7), pages 1-13, April.
    2. Jan Fořt & Jan Kočí & Robert Černý, 2021. "Environmental Efficiency Aspects of Basalt Fibers Reinforcement in Concrete Mixtures," Energies, MDPI, vol. 14(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Chai & Yong-Chun Cheng & Yuwei Zhang & Yu Chen & Bing Zhu, 2020. "Experimental Study on the Performance Decay of Permeable Asphalt Mixture in Seasonally Frozen Regions under Freeze-Thaw Cycles," Sustainability, MDPI, vol. 12(7), pages 1-13, April.
    2. Michał Urbaniak & Ewa Kardas-Cinal, 2021. "Optimization of Train Energy Cooperation Using Scheduled Service Time Reserve," Energies, MDPI, vol. 15(1), pages 1-17, December.
    3. Zhu, Dianchen & Sze, N.N. & Feng, Zhongxiang & Chan, Ho-Yin, 2023. "Waiting for signalized crossing or walking to footbridge/underpass? Examining the effect of weather using stated choice experiment with panel mixed random regret minimization approach," Transport Policy, Elsevier, vol. 138(C), pages 144-169.
    4. Ling Xu & Yinfei Du & Giuseppe Loprencipe & Laura Moretti, 2023. "Rheological and Fatigue Characteristics of Asphalt Mastics and Mixtures Containing Municipal Solid Waste Incineration (MSWI) Residues," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    5. Giuseppe Galiano & Laura Moretti, 2021. "Consistency of Urban Roads to Manage Emergencies: Methodology to Identify the Minimum Network with Total Connectivity at Maximum Availability," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    6. Jingyan Wu & Saini Yang & Feng Yang & Xihui Yin, 2021. "Road Weather Monitoring System Shows High Cost-Effectiveness in Mitigating Malfunction Losses," Sustainability, MDPI, vol. 13(22), pages 1-13, November.
    7. Laura Moretti & Giuseppe Cantisani & Marco Carpiceci & Antonio D’Andrea & Giulia Del Serrone & Paola Di Mascio & Giuseppe Loprencipe, 2021. "Effect of Sampietrini Pavers on Urban Heat Islands," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    8. Rouhani, Omid, 2022. "Are transportation solutions doomed to fail climate-change actions? A book review," MPRA Paper 115675, University Library of Munich, Germany.
    9. Olugbemi Mosunmola Aroke & Behzad Esmaeili & Sojung Claire Kim, 2021. "Impact of Climate Change on Transportation Infrastructure: Comparing Perception Differences between the US Public and the Department of Transportation (DOT) Professionals," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    10. Paolo Peluso & Giovanni Persichetti & Laura Moretti, 2022. "Effectiveness of Road Cool Pavements, Greenery, and Canopies to Reduce the Urban Heat Island Effects," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    11. Yaning Qiao & Andrew R. Dawson & Tony Parry & Gerardo Flintsch & Wenshun Wang, 2020. "Flexible Pavements and Climate Change: A Comprehensive Review and Implications," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    12. Yong Tian & Lili Wan & Bojia Ye & Dawei Xing, 2019. "Cruise Flight Performance Optimization for Minimizing Green Direct Operating Cost," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    13. Abdul Munaf Mohamed Irfeey & Hing-Wah Chau & Mohamed Mahusoon Fathima Sumaiya & Cheuk Yin Wai & Nitin Muttil & Elmira Jamei, 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    14. Maria Vittoria Corazza & Sandro Imbastaro & Marco Pascucci, 2020. "Regenerating Communities. New Life for a Local Railway: A Technological and Environmental Study," Sustainability, MDPI, vol. 12(9), pages 1-24, May.
    15. Laura Moretti & Giuseppe Cantisani & Marco Carpiceci & Antonio D’Andrea & Giulia Del Serrone & Paola Di Mascio & Paolo Peluso & Giuseppe Loprencipe, 2022. "Investigation of Parking Lot Pavements to Counteract Urban Heat Islands," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    16. Sara M. Andrés-Vizán & Joaquín M. Villanueva-Balsera & J. Valeriano Álvarez-Cabal & Gemma M. Martínez-Huerta, 2020. "Classification of BOF Slag by Data Mining Techniques According to Chemical Composition," Sustainability, MDPI, vol. 12(8), pages 1-10, April.
    17. Yangsen Cao & Aimin Sha & Zhuangzhuang Liu & Fan Zhang & Jiarong Li & Hai Liu, 2022. "Thermal Conductivity Evaluation and Road Performance Test of Steel Slag Asphalt Mixture," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    18. Xiaobing Chen & Miao Zhang & Jianming Yao & Xiaofei Zhang & Wei Wen & Jinhai Yin & Zhongshan Liang, 2023. "Research on Water Stability and Moisture Damage Mechanism of a Steel Slag Porous Asphalt Mixture," Sustainability, MDPI, vol. 15(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5754-:d:277493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.