IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2966-d342754.html
   My bibliography  Save this article

Experimental Study on the Performance Decay of Permeable Asphalt Mixture in Seasonally Frozen Regions under Freeze-Thaw Cycles

Author

Listed:
  • Chao Chai

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Yong-Chun Cheng

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Yuwei Zhang

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Yu Chen

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Bing Zhu

    (College of Transportation, Jilin University, Changchun 130025, China)

Abstract

This paper focuses on the freeze-thaw cycles (F-T cycles) resistance of porous asphalt mixture (PAM) with different air voids in order to explore the gradation of the PAM suitable for seasonal freezing regions. Three sets of PAMs with 18%, 21%, and 25% air voids were designed. After 0–20 F-T cycles, the effects of F-T cycles on the performance degradation of three groups of PAMs were studied by performing a low-temperature splitting test with acoustic emission technology, a normal temperature splitting test, a compression test, a Cantabro particle loss test, and a dynamic creep test. The results show that the damage process of PAM caused by multiple F-T cycles could be more clearly defined by acoustic emission parameters. In addition, the larger the air void, the smaller its indirect tensile strength and compression strength, and the worse its particle loss resistance and high-temperature stability, which made the adverse effect of F-T cycles more significant. Therefore, the air void of PAM used in seasonal freezing regions is suggested to be less than 21%.

Suggested Citation

  • Chao Chai & Yong-Chun Cheng & Yuwei Zhang & Yu Chen & Bing Zhu, 2020. "Experimental Study on the Performance Decay of Permeable Asphalt Mixture in Seasonally Frozen Regions under Freeze-Thaw Cycles," Sustainability, MDPI, vol. 12(7), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2966-:d:342754
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2966/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2966/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongchun Cheng & Wensheng Wang & Guojin Tan & Chenglin Shi, 2018. "Assessing High- and Low-Temperature Properties of Asphalt Pavements Incorporating Waste Oil Shale as an Alternative Material in Jilin Province, China," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    2. Yongchun Cheng & Chao Chai & Yuwei Zhang & Yu Chen & Bing Zhu, 2019. "A New Eco-Friendly Porous Asphalt Mixture Modified by Crumb Rubber and Basalt Fiber," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    3. Hanbing Liu & Bing Zhu & Haibin Wei & Chao Chai & Yu Chen, 2019. "Laboratory Evaluation on the Performance of Porous Asphalt Mixture with Steel Slag for Seasonal Frozen Regions," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles E. Sprouse & Conrad Hoover & Olivia Obritsch & Hannah Thomazin, 2020. "Advancing Pervious Pavements through Nomenclature, Standards, and Holistic Green Design," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    2. Ramon Botella, 2022. "Sustainable Pavement Materials and Technology," Sustainability, MDPI, vol. 14(11), pages 1-2, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Fořt & Jan Kočí & Robert Černý, 2021. "Environmental Efficiency Aspects of Basalt Fibers Reinforcement in Concrete Mixtures," Energies, MDPI, vol. 14(22), pages 1-13, November.
    2. Wensheng Wang & Yongchun Cheng & Heping Chen & Guojin Tan & Zehua Lv & Yunshuo Bai, 2019. "Study on the Performances of Waste Crumb Rubber Modified Asphalt Mixture with Eco-Friendly Diatomite and Basalt Fiber," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    3. Yongchun Cheng & Chao Chai & Yuwei Zhang & Yu Chen & Bing Zhu, 2019. "A New Eco-Friendly Porous Asphalt Mixture Modified by Crumb Rubber and Basalt Fiber," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    4. Xuedong Guo & Xing Chen & Yingsong Li & Zhun Li & Wei Guo, 2019. "Using Sustainable Oil Shale Waste Powder Treated with Silane Coupling Agent for Enriching the Performance of Asphalt and Asphalt Mixture," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    5. Sara M. Andrés-Vizán & Joaquín M. Villanueva-Balsera & J. Valeriano Álvarez-Cabal & Gemma M. Martínez-Huerta, 2020. "Classification of BOF Slag by Data Mining Techniques According to Chemical Composition," Sustainability, MDPI, vol. 12(8), pages 1-10, April.
    6. Yangsen Cao & Aimin Sha & Zhuangzhuang Liu & Fan Zhang & Jiarong Li & Hai Liu, 2022. "Thermal Conductivity Evaluation and Road Performance Test of Steel Slag Asphalt Mixture," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    7. Xiaobing Chen & Miao Zhang & Jianming Yao & Xiaofei Zhang & Wei Wen & Jinhai Yin & Zhongshan Liang, 2023. "Research on Water Stability and Moisture Damage Mechanism of a Steel Slag Porous Asphalt Mixture," Sustainability, MDPI, vol. 15(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2966-:d:342754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.