IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p6924-d294427.html
   My bibliography  Save this article

Laboratory Evaluation on the Performance of Porous Asphalt Mixture with Steel Slag for Seasonal Frozen Regions

Author

Listed:
  • Hanbing Liu

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Bing Zhu

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Haibin Wei

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Chao Chai

    (College of Transportation, Jilin University, Changchun 130025, China)

  • Yu Chen

    (College of Transportation, Jilin University, Changchun 130025, China)

Abstract

Porous asphalt mixtures with steel slag (PAM-SS), as an eco-friendly and low-cost pavement material, are conducive to addressing the issue of urban floods and natural resource shortages. The primary objective of this paper was to explore the feasibility of the application of PAM-SS for seasonal frozen regions, and ascertain the optimal replacement percentage of natural aggregate. Steel slag coarse aggregate (SSCA) was used to replace basalt coarse aggregate (BCA) at four levels (25%, 50%, 75%, 100%) by equal volume. The volume characteristics, mechanical properties, low-temperature cracking resistance, water stability, and freeze-thaw (F-T) durability of the mixture were assessed. The results indicated that the low-temperature cracking resistance of the mixture was significantly enhanced and acoustic emission (AE) energy was uniformly released by the incorporation of steel slag. Furthermore, the porosity, permeability, Marshall stability (MS), and the resistance against water damage and F-T cycles were also significantly improved. Based on the experimental results, the complete replacement of natural aggregate is advisable to obtain an optimal overall performance.

Suggested Citation

  • Hanbing Liu & Bing Zhu & Haibin Wei & Chao Chai & Yu Chen, 2019. "Laboratory Evaluation on the Performance of Porous Asphalt Mixture with Steel Slag for Seasonal Frozen Regions," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6924-:d:294427
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/6924/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/6924/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wensheng Wang & Yongchun Cheng & Heping Chen & Guojin Tan & Zehua Lv & Yunshuo Bai, 2019. "Study on the Performances of Waste Crumb Rubber Modified Asphalt Mixture with Eco-Friendly Diatomite and Basalt Fiber," Sustainability, MDPI, vol. 11(19), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Chai & Yong-Chun Cheng & Yuwei Zhang & Yu Chen & Bing Zhu, 2020. "Experimental Study on the Performance Decay of Permeable Asphalt Mixture in Seasonally Frozen Regions under Freeze-Thaw Cycles," Sustainability, MDPI, vol. 12(7), pages 1-13, April.
    2. Yongchun Cheng & Chao Chai & Yuwei Zhang & Yu Chen & Bing Zhu, 2019. "A New Eco-Friendly Porous Asphalt Mixture Modified by Crumb Rubber and Basalt Fiber," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    3. Sara M. Andrés-Vizán & Joaquín M. Villanueva-Balsera & J. Valeriano Álvarez-Cabal & Gemma M. Martínez-Huerta, 2020. "Classification of BOF Slag by Data Mining Techniques According to Chemical Composition," Sustainability, MDPI, vol. 12(8), pages 1-10, April.
    4. Yangsen Cao & Aimin Sha & Zhuangzhuang Liu & Fan Zhang & Jiarong Li & Hai Liu, 2022. "Thermal Conductivity Evaluation and Road Performance Test of Steel Slag Asphalt Mixture," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    5. Xiaobing Chen & Miao Zhang & Jianming Yao & Xiaofei Zhang & Wei Wen & Jinhai Yin & Zhongshan Liang, 2023. "Research on Water Stability and Moisture Damage Mechanism of a Steel Slag Porous Asphalt Mixture," Sustainability, MDPI, vol. 15(20), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarık Serhat Bozkurt & Ahmet Sertaç Karakaş, 2022. "Investigation of Asphalt Pavement to Improve Environmental Noise and Water Sustainability," Sustainability, MDPI, vol. 14(22), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6924-:d:294427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.