IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i14p3899-d249309.html
   My bibliography  Save this article

Cruise Flight Performance Optimization for Minimizing Green Direct Operating Cost

Author

Listed:
  • Yong Tian

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Lili Wan

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Bojia Ye

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Dawei Xing

    (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract

To cope with the environmental impact of aviation and pollution problems in the future, airlines need to assess environmental impacts and offer countermeasures in advance. In order to measure the influence of environment on the airlines’ operational costs, this paper establishes an aircraft green direct operating cost (GDOC) model to quantify adverse environmental effects, such as air pollution and greenhouse effects, into the direct operating cost (DOC). Furthermore, fuel consumption, flight time, and distance in the cruising stage account for about 80% of the entire flight mission, and optimizing cruise flight performance can contribute greatly to reduce GDOC. Therefore, this paper sets up an optimal control model to minimize GDOC, establishes a discrete time dynamic system for optimizing the cruise altitude and speed profiles, and searches the optimal results by using dynamic programming. Besides, as meteorological conditions affect aircraft aerodynamics, fuel flow rate, contrail formation, and so on, this paper analyzes meteorological uncertainty by using historic meteorological data. Finally, a route is selected as an example, and the rationality of the optimal results is proven by comparing GDOC with DOC. The results and discussion of the numerical test also show that environmental effects on aircraft operation can be reduced significantly by adopting GDOC as the optimization objective, especially the contrail cost, and the step-climb cruise mode can further reduce GDOC effectively.

Suggested Citation

  • Yong Tian & Lili Wan & Bojia Ye & Dawei Xing, 2019. "Cruise Flight Performance Optimization for Minimizing Green Direct Operating Cost," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3899-:d:249309
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/14/3899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/14/3899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sonia Cafieri & Nicolas Durand, 2014. "Aircraft deconfliction with speed regulation: new models from mixed-integer optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 613-629, April.
    2. Laura Moretti & Giuseppe Loprencipe, 2018. "Climate Change and Transport Infrastructures: State of the Art," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Velásquez-SanMartín & Xabier Insausti & Marta Zárraga-Rodríguez & Jesús Gutiérrez-Gutiérrez, 2021. "A Mathematical Model for the Analysis of Jet Engine Fuel Consumption during Aircraft Cruise," Energies, MDPI, vol. 14(12), pages 1-13, June.
    2. Rocio de la Torre & Canan G. Corlu & Javier Faulin & Bhakti S. Onggo & Angel A. Juan, 2021. "Simulation, Optimization, and Machine Learning in Sustainable Transportation Systems: Models and Applications," Sustainability, MDPI, vol. 13(3), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonia Cafieri & Claudia D’Ambrosio, 2018. "Feasibility pump for aircraft deconfliction with speed regulation," Journal of Global Optimization, Springer, vol. 71(3), pages 501-515, July.
    2. Michał Urbaniak & Ewa Kardas-Cinal, 2021. "Optimization of Train Energy Cooperation Using Scheduled Service Time Reserve," Energies, MDPI, vol. 15(1), pages 1-17, December.
    3. Zhu, Dianchen & Sze, N.N. & Feng, Zhongxiang & Chan, Ho-Yin, 2023. "Waiting for signalized crossing or walking to footbridge/underpass? Examining the effect of weather using stated choice experiment with panel mixed random regret minimization approach," Transport Policy, Elsevier, vol. 138(C), pages 144-169.
    4. Cafieri, Sonia & Omheni, Riadh, 2017. "Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes," European Journal of Operational Research, Elsevier, vol. 260(1), pages 283-290.
    5. Cafieri, Sonia & Conn, Andrew R. & Mongeau, Marcel, 2023. "Mixed-integer nonlinear and continuous optimization formulations for aircraft conflict avoidance via heading and speed deviations," European Journal of Operational Research, Elsevier, vol. 310(2), pages 670-679.
    6. Yongchun Cheng & Chao Chai & Yuwei Zhang & Yu Chen & Bing Zhu, 2019. "A New Eco-Friendly Porous Asphalt Mixture Modified by Crumb Rubber and Basalt Fiber," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    7. Mercedes Pelegrín & Martina Cerulli, 2023. "Aircraft Conflict Resolution: A Benchmark Generator," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 274-285, March.
    8. Ling Xu & Yinfei Du & Giuseppe Loprencipe & Laura Moretti, 2023. "Rheological and Fatigue Characteristics of Asphalt Mastics and Mixtures Containing Municipal Solid Waste Incineration (MSWI) Residues," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    9. Giuseppe Galiano & Laura Moretti, 2021. "Consistency of Urban Roads to Manage Emergencies: Methodology to Identify the Minimum Network with Total Connectivity at Maximum Availability," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    10. Jingyan Wu & Saini Yang & Feng Yang & Xihui Yin, 2021. "Road Weather Monitoring System Shows High Cost-Effectiveness in Mitigating Malfunction Losses," Sustainability, MDPI, vol. 13(22), pages 1-13, November.
    11. Laura Moretti & Giuseppe Cantisani & Marco Carpiceci & Antonio D’Andrea & Giulia Del Serrone & Paola Di Mascio & Giuseppe Loprencipe, 2021. "Effect of Sampietrini Pavers on Urban Heat Islands," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    12. Rouhani, Omid, 2022. "Are transportation solutions doomed to fail climate-change actions? A book review," MPRA Paper 115675, University Library of Munich, Germany.
    13. Olugbemi Mosunmola Aroke & Behzad Esmaeili & Sojung Claire Kim, 2021. "Impact of Climate Change on Transportation Infrastructure: Comparing Perception Differences between the US Public and the Department of Transportation (DOT) Professionals," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    14. Paolo Peluso & Giovanni Persichetti & Laura Moretti, 2022. "Effectiveness of Road Cool Pavements, Greenery, and Canopies to Reduce the Urban Heat Island Effects," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    15. Martina Cerulli & Claudia D’Ambrosio & Leo Liberti & Mercedes Pelegrín, 2021. "Detecting and solving aircraft conflicts using bilevel programming," Journal of Global Optimization, Springer, vol. 81(2), pages 529-557, October.
    16. Yaning Qiao & Andrew R. Dawson & Tony Parry & Gerardo Flintsch & Wenshun Wang, 2020. "Flexible Pavements and Climate Change: A Comprehensive Review and Implications," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    17. Abdul Munaf Mohamed Irfeey & Hing-Wah Chau & Mohamed Mahusoon Fathima Sumaiya & Cheuk Yin Wai & Nitin Muttil & Elmira Jamei, 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    18. Maria Vittoria Corazza & Sandro Imbastaro & Marco Pascucci, 2020. "Regenerating Communities. New Life for a Local Railway: A Technological and Environmental Study," Sustainability, MDPI, vol. 12(9), pages 1-24, May.
    19. Ramazan Kursat Cecen & Tugba Saraç & Cem Cetek, 2021. "Meta-heuristic algorithm for aircraft pre-tactical conflict resolution with altitude and heading angle change maneuvers," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 629-647, October.
    20. Laura Moretti & Giuseppe Cantisani & Marco Carpiceci & Antonio D’Andrea & Giulia Del Serrone & Paola Di Mascio & Paolo Peluso & Giuseppe Loprencipe, 2022. "Investigation of Parking Lot Pavements to Counteract Urban Heat Islands," Sustainability, MDPI, vol. 14(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:14:p:3899-:d:249309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.