IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7273-d838383.html
   My bibliography  Save this article

Investigation of Parking Lot Pavements to Counteract Urban Heat Islands

Author

Listed:
  • Laura Moretti

    (Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Giuseppe Cantisani

    (Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Marco Carpiceci

    (Department of History, Representation and Restoration of Architecture, Sapienza University of Rome, Piazza Borghese 9, 00186 Rome, Italy)

  • Antonio D’Andrea

    (Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Giulia Del Serrone

    (Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Paola Di Mascio

    (Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Paolo Peluso

    (Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Giuseppe Loprencipe

    (Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

Abstract

Urban heat islands (UHI) are one of the unequivocal effects of the ongoing process of climate change: anthropized areas suffer extreme heat events that affect the human perception of comfort. This study investigated the effects of road pavements as a passive countermeasure by comparing the air temperature (AT) and the predicted mean vote (PMV) for different surface materials used to pave a historical square in Rome, Italy. The software ENVI-met has been used to compare, for the whole year 2021, the performances of the existing asphalt pavement with five alternative solutions composed of light concrete, bricks, stone, wood, and grass. This paper proposed a new methodology to summarize the multi-dimensional results over both temporal and spatial domains. The results of the simulations in the evening of the hottest month showed the existing asphalt pavement gives the worst performance, while the light concrete blocks and the grass pavement ensure the coolest solutions in terms of AT (the average AT is 32 °C for the asphalt pavement and 30 °C for the modular one) and PMV (the maximum PMV value is 4.6 for the asphalt pavement and 4.4 for the modular and grass ones).

Suggested Citation

  • Laura Moretti & Giuseppe Cantisani & Marco Carpiceci & Antonio D’Andrea & Giulia Del Serrone & Paola Di Mascio & Paolo Peluso & Giuseppe Loprencipe, 2022. "Investigation of Parking Lot Pavements to Counteract Urban Heat Islands," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7273-:d:838383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    2. Hong Nam Thai & Ken Kawamoto & Hoang Giang Nguyen & Toshihiro Sakaki & Toshiko Komatsu & Per Moldrup, 2022. "Measurements and Modeling of Thermal Conductivity of Recycled Aggregates from Concrete, Clay Brick, and Their Mixtures with Autoclaved Aerated Concrete Grains," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    3. Irantzu Alvarez & Laura Quesada-Ganuza & Estibaliz Briz & Leire Garmendia, 2021. "Urban Heat Islands and Thermal Comfort: A Case Study of Zorrotzaurre Island in Bilbao," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
    4. Silvia Croce & Elisa D’Agnolo & Mauro Caini & Rossana Paparella, 2021. "The Use of Cool Pavements for the Regeneration of Industrial Districts," Sustainability, MDPI, vol. 13(11), pages 1-24, June.
    5. Jinli Xie & Zuheng Zhou, 2022. "Numerical Analysis on the Optimization of Evaporative Cooling Performance for Permeable Pavements," Sustainability, MDPI, vol. 14(9), pages 1-13, April.
    6. Brenda B. Lin & Jacqui Meyers & R. Matthew Beaty & Guy B. Barnett, 2016. "Urban Green Infrastructure Impacts on Climate Regulation Services in Sydney, Australia," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
    7. Laura Moretti & Giuseppe Loprencipe, 2018. "Climate Change and Transport Infrastructures: State of the Art," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    8. Miguel Ángel Sanjuán & Ángel Morales & Aniceto Zaragoza, 2021. "Effect of Precast Concrete Pavement Albedo on the Climate Change Mitigation in Spain," Sustainability, MDPI, vol. 13(20), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Cantisani & Maria Vittoria Corazza & Paola Di Mascio & Laura Moretti, 2023. "Eight Traffic Calming “Easy Pieces” to Shape the Everyday Pedestrian Realm," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    2. Fabiani, Claudia & Gambucci, Marta & Chiatti, Chiara & Zampini, Giulia & Latterini, Loredana & Pisello, Anna Laura, 2022. "Towards field implementation of photoluminescence in the built environment for passive cooling and lighting energy efficiency," Applied Energy, Elsevier, vol. 324(C).
    3. Jia, Qi & Zhu, Yian & Zhang, Tiantian & Li, Shuling & Han, Dongliang & Feng, Qi & Tan, Yufei & Li, Baochang, 2024. "Urban microclimate differences in continental zone of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    4. Giuseppe Loprencipe & Salvatore Bruno & Giuseppe Cantisani & Antonio D’Andrea & Paola Di Mascio & Laura Moretti, 2023. "Methods for Measuring and Assessing Irregularities of Stone Pavements—Part I," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    5. Paolo Peluso & Giovanni Persichetti & Laura Moretti, 2022. "Effectiveness of Road Cool Pavements, Greenery, and Canopies to Reduce the Urban Heat Island Effects," Sustainability, MDPI, vol. 14(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Moretti & Giuseppe Cantisani & Marco Carpiceci & Antonio D’Andrea & Giulia Del Serrone & Paola Di Mascio & Giuseppe Loprencipe, 2021. "Effect of Sampietrini Pavers on Urban Heat Islands," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    2. Martina Giorio & Rossana Paparella, 2023. "Climate Mitigation Strategies: The Use of Cool Pavements," Sustainability, MDPI, vol. 15(9), pages 1-26, May.
    3. Paolo Peluso & Giovanni Persichetti & Laura Moretti, 2022. "Effectiveness of Road Cool Pavements, Greenery, and Canopies to Reduce the Urban Heat Island Effects," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    4. Abdul Munaf Mohamed Irfeey & Hing-Wah Chau & Mohamed Mahusoon Fathima Sumaiya & Cheuk Yin Wai & Nitin Muttil & Elmira Jamei, 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    5. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    6. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    7. Ning Li & Yuxiang Tian & Biao Ma & Dongxia Hu, 2022. "Experimental Investigation of Water-Retaining and Mechanical Behaviors of Unbound Granular Materials under Infiltration," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    8. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    9. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    10. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    11. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    12. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    13. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    15. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    16. Michał Urbaniak & Ewa Kardas-Cinal, 2021. "Optimization of Train Energy Cooperation Using Scheduled Service Time Reserve," Energies, MDPI, vol. 15(1), pages 1-17, December.
    17. Salim Ferwati & Cynthia Skelhorn & Vivek Shandas & Yasuyo Makido, 2019. "A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    18. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    19. Zhu, Dianchen & Sze, N.N. & Feng, Zhongxiang & Chan, Ho-Yin, 2023. "Waiting for signalized crossing or walking to footbridge/underpass? Examining the effect of weather using stated choice experiment with panel mixed random regret minimization approach," Transport Policy, Elsevier, vol. 138(C), pages 144-169.
    20. Nikolaos Sylliris & Apostolos Papagiannakis & Aristotelis Vartholomaios, 2023. "Improving the Climate Resilience of Urban Road Networks: A Simulation of Microclimate and Air Quality Interventions in a Typology of Streets in Thessaloniki Historic Centre," Land, MDPI, vol. 12(2), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7273-:d:838383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.