IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7736-d681993.html
   My bibliography  Save this article

Environmental Efficiency Aspects of Basalt Fibers Reinforcement in Concrete Mixtures

Author

Listed:
  • Jan Fořt

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic)

  • Jan Kočí

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic)

  • Robert Černý

    (Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Prague 6, Czech Republic)

Abstract

Modern building materials must fulfill not only functional performance criteria but also reduce the environmental impact accompanied by their production. Within the past decades, fiber-reinforced materials have been found to be promising and durable materials that can be utilized in various fields. Among a wide range of reinforcement types, basalt fibers have been introduced as an alternative to broadly used steel fibers. As informed by the available literature, benefits linked with less energy-intensive production indicate a very good potential application of this material in terms of functional properties and, at the same time, a reduction in environmental burden. However, only a very limited amount of information is available on the actual impact of using basalt fibers in terms of environmental impact. In order to fill this gap, the present study describes, using Life Cycle Assessment, the environmental impacts associated with the production of basalt fibers. In order provide a more reliable and coherent overview, an analysis combining functional and environmental indicators was performed. The presented results reveal that the use of basalt reinforcement provides a significantly lower environmental intensity per strength unit, especially in the case of compressive and flexural strength.

Suggested Citation

  • Jan Fořt & Jan Kočí & Robert Černý, 2021. "Environmental Efficiency Aspects of Basalt Fibers Reinforcement in Concrete Mixtures," Energies, MDPI, vol. 14(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7736-:d:681993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shamir Sakir & Sudharshan N. Raman & Md. Safiuddin & A. B. M. Amrul Kaish & Azrul A. Mutalib, 2020. "Utilization of By-Products and Wastes as Supplementary Cementitious Materials in Structural Mortar for Sustainable Construction," Sustainability, MDPI, vol. 12(9), pages 1-35, May.
    2. Yongchun Cheng & Chao Chai & Yuwei Zhang & Yu Chen & Bing Zhu, 2019. "A New Eco-Friendly Porous Asphalt Mixture Modified by Crumb Rubber and Basalt Fiber," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    3. Alice Paola Pomè & Chiara Tagliaro & Gianandrea Ciaramella, 2021. "A Proposal for Measuring In-Use Buildings’ Impact through the Ecological Footprint Approach," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Chai & Yong-Chun Cheng & Yuwei Zhang & Yu Chen & Bing Zhu, 2020. "Experimental Study on the Performance Decay of Permeable Asphalt Mixture in Seasonally Frozen Regions under Freeze-Thaw Cycles," Sustainability, MDPI, vol. 12(7), pages 1-13, April.
    2. Jan Fořt & Jiří Šál & Jaroslav Žák & Robert Černý, 2020. "Assessment of Wood-Based Fly Ash as Alternative Cement Replacement," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    3. Cichowicz, Robert & Jerominko, Tomasz, 2023. "Comparison of calculation and consumption methods for determining Energy Performance Certificates (EPC) in the case of multi-family residential buildings in Poland (Central-Eastern Europe)," Energy, Elsevier, vol. 282(C).
    4. Jesús M. Blanco & Yokasta García Frómeta & Maggi Madrid & Jesús Cuadrado, 2021. "Thermal Performance Assessment of Walls Made of Three Types of Sustainable Concrete Blocks by Means of FEM and Validated through an Extensive Measurement Campaign," Sustainability, MDPI, vol. 13(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7736-:d:681993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.