IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5659-d276264.html
   My bibliography  Save this article

Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest, and Rotation Forest for Landslide Susceptibility Modeling

Author

Listed:
  • Soyoung Park

    (BK21 Plus Project of the Graduate School of Earth Environmental Hazard System, Pukyong National University, Busan 48513, Korea)

  • Se-Yeong Hamm

    (Department of Geological Sciences, Pusan National University, Busan 46241, Korea)

  • Jinsoo Kim

    (Department of Spatial Information Engineering, Pukyong National University, Busan 48513, Korea)

Abstract

This study analyzed and compared landslide susceptibility models using decision tree (DT), random forest (RF), and rotation forest (RoF) algorithms at Woomyeon Mountain, South Korea. Out of a total of 145 landslide locations, 102 locations (70%) were used for model training, and the remaining 43 locations (30%) were used for validation. Fourteen landslide conditioning factors were identified, and the contributions of each factor were evaluated using the RRelief-F algorithm with a 10-fold cross-validation approach. Three factors, timber diameter, age, and density had no contribution to landslide occurrence. Landslide susceptibility maps (LSMs) were produced using DT, RF, and RoF models with the 11 remaining landslide conditioning factors: altitude, slope, aspect, profile curvature, plan curvature, topographic position index, elevation-relief ratio, slope length and slope steepness, topographic wetness index, stream power index, and timber type. The performances of the LSMs were assessed and compared based on sensitivity, specificity, precision, accuracy, kappa index, and receiver operating characteristic curves. The results showed that the ensemble learning methods outperformed the single classifier (DT) and that the RoF model had the highest prediction capability compared to the DT and RF models. The results of this study may be helpful in managing areas vulnerable to landslides and establishing mitigation strategies.

Suggested Citation

  • Soyoung Park & Se-Yeong Hamm & Jinsoo Kim, 2019. "Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest, and Rotation Forest for Landslide Susceptibility Modeling," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5659-:d:276264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5659/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5659/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K.W. de Bock & D. van den Poel, 2011. "An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction," Post-Print hal-00800160, HAL.
    2. Hamid Pourghasemi & Biswajeet Pradhan & Candan Gokceoglu, 2012. "Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 965-996, September.
    3. Saro Lee & Soo-Min Hong & Hyung-Sup Jung, 2017. "A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea," Sustainability, MDPI, vol. 9(1), pages 1-15, January.
    4. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    5. Quang-Khanh Nguyen & Dieu Tien Bui & Nhat-Duc Hoang & Phan Trong Trinh & Viet-Ha Nguyen & Isık Yilmaz, 2017. "A Novel Hybrid Approach Based on Instance Based Learning Classifier and Rotation Forest Ensemble for Spatial Prediction of Rainfall-Induced Shallow Landslides using GIS," Sustainability, MDPI, vol. 9(5), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Li & Zhongyun Ni & Yinbing Zhao & Wei Hu & Zhenrui Long & Haiyu Ma & Guoli Zhou & Yuhao Luo & Chuntao Geng, 2022. "Susceptibility Analysis of Geohazards in the Longmen Mountain Region after the Wenchuan Earthquake," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    2. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    3. Yongwei Li & Xianmin Wang & Hang Mao, 2020. "Influence of human activity on landslide susceptibility development in the Three Gorges area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2115-2151, December.
    4. Langping Li & Hengxing Lan, 2020. "Integration of Spatial Probability and Size in Slope-Unit-Based Landslide Susceptibility Assessment: A Case Study," IJERPH, MDPI, vol. 17(21), pages 1-17, November.
    5. Ai Zhang, 2021. "Influence of data mining technology in information analysis of human resource management on macroscopic economic management," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-12, May.
    6. Javed Mallick & Saeed Alqadhi & Swapan Talukdar & Majed AlSubih & Mohd. Ahmed & Roohul Abad Khan & Nabil Ben Kahla & Saud M. Abutayeh, 2021. "Risk Assessment of Resources Exposed to Rainfall Induced Landslide with the Development of GIS and RS Based Ensemble Metaheuristic Machine Learning Algorithms," Sustainability, MDPI, vol. 13(2), pages 1-30, January.
    7. Soyoung Park & Jinsoo Kim, 2021. "The Predictive Capability of a Novel Ensemble Tree-Based Algorithm for Assessing Groundwater Potential," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    8. Yunjie Yang & Rui Zhang & Tianyu Wang & Anmengyun Liu & Yi He & Jichao Lv & Xu He & Wenfei Mao & Wei Xiang & Bo Zhang, 2024. "An information quantity and machine learning integrated model for landslide susceptibility mapping in Jiuzhaigou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10185-10217, September.
    9. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.
    10. Gibson Kimutai & Alexander Ngenzi & Rutabayiro Ngoga Said & Ambrose Kiprop & Anna Förster, 2020. "An Optimum Tea Fermentation Detection Model Based on Deep Convolutional Neural Networks," Data, MDPI, vol. 5(2), pages 1-26, April.
    11. Peyman Yariyan & Saeid Janizadeh & Tran Phong & Huu Duy Nguyen & Romulus Costache & Hiep Le & Binh Thai Pham & Biswajeet Pradhan & John P. Tiefenbacher, 2020. "Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3037-3053, July.
    12. Jihye Han & Jinsoo Kim & Soyoung Park & Sanghun Son & Minji Ryu, 2020. "Seismic Vulnerability Assessment and Mapping of Gyeongju, South Korea Using Frequency Ratio, Decision Tree, and Random Forest," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    13. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    14. Bosy A. El-Haddad & Ahmed M. Youssef & Hamid R. Pourghasemi & Biswajeet Pradhan & Abdel-Hamid El-Shater & Mohamed H. El-Khashab, 2021. "Flood susceptibility prediction using four machine learning techniques and comparison of their performance at Wadi Qena Basin, Egypt," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 83-114, January.
    15. Ahmed M. Youssef & Ali M. Mahdi & Hamid Reza Pourghasemi, 2023. "Optimal flood susceptibility model based on performance comparisons of LR, EGB, and RF algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1071-1096, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
    2. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    3. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    4. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    5. Ghosh, Atish R. & Qureshi, Mahvash S. & Kim, Jun Il & Zalduendo, Juan, 2014. "Surges," Journal of International Economics, Elsevier, vol. 92(2), pages 266-285.
      • Mahvash S Qureshi & Mr. Atish R. Ghosh & Mr. Juan Zalduendo & Mr. Jun I Kim, 2012. "Surges," IMF Working Papers 2012/022, International Monetary Fund.
    6. Tomàs Aluja-Banet & Eduard Nafria, 2003. "Stability and scalability in decision trees," Computational Statistics, Springer, vol. 18(3), pages 505-520, September.
    7. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    8. Schwartz, Ira M. & York, Peter & Nowakowski-Sims, Eva & Ramos-Hernandez, Ana, 2017. "Predictive and prescriptive analytics, machine learning and child welfare risk assessment: The Broward County experience," Children and Youth Services Review, Elsevier, vol. 81(C), pages 309-320.
    9. Yousaf Muhammad & Dey Sandeep Kumar, 2022. "Best proxy to determine firm performance using financial ratios: A CHAID approach," Review of Economic Perspectives, Sciendo, vol. 22(3), pages 219-239, September.
    10. Ralf Elsner & Manfred Krafft & Arnd Huchzermeier, 2003. "Optimizing Rhenania's Mail-Order Business Through Dynamic Multilevel Modeling (DMLM)," Interfaces, INFORMS, vol. 33(1), pages 50-66, February.
    11. Txomin Bornaetxea & Juan Remondo & Jaime Bonachea & Pablo Valenzuela, 2023. "Exploring available landslide inventories for susceptibility analysis in Gipuzkoa province (Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2513-2542, September.
    12. Gökhan Demir & Mustafa Aytekin & Aykut Akgün & Sabriye İkizler & Orhan Tatar, 2013. "A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1481-1506, February.
    13. Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
    14. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    15. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    16. Osman Taylan & Abdulaziz S. Alkabaa & Mustafa Tahsin Yılmaz, 2022. "Impact of COVID-19 on G20 countries: analysis of economic recession using data mining approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    17. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
    18. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    19. Sadhan Malik & Subodh Chandra Pal & Biswajit Das & Rabin Chakrabortty, 2020. "Assessment of vegetation status of Sali River basin, a tributary of Damodar River in Bankura District, West Bengal, using satellite data," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5651-5685, August.
    20. Vicente-Cera, Isaías & Acevedo-Merino, Asunción & Nebot, Enrique & López-Ramírez, Juan Antonio, 2020. "Analyzing cruise ship itineraries patterns and vessels diversity in ports of the European maritime region: A hierarchical clustering approach," Journal of Transport Geography, Elsevier, vol. 85(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5659-:d:276264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.