IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i6p3229-d767490.html
   My bibliography  Save this article

Susceptibility Analysis of Geohazards in the Longmen Mountain Region after the Wenchuan Earthquake

Author

Listed:
  • Shuai Li

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Zhongyun Ni

    (College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
    School of Geography, Archaeology & Irish Studies, National University of Ireland, H91 CF50 Galway, Ireland)

  • Yinbing Zhao

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China
    School of Geography, Archaeology & Irish Studies, National University of Ireland, H91 CF50 Galway, Ireland
    Human Geography Research Center of Qinghai Tibet Plateau and Its Eastern Margin, Chengdu University of Technology, Chengdu 610059, China)

  • Wei Hu

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Zhenrui Long

    (Sichuan Research Institute of Ecological Restoration of Land Space and Geohazard Prevention and Control, Sichuan Provincial Department of Natural Resources, Chengdu 610063, China)

  • Haiyu Ma

    (College of Information, Shanghai Ocean University, Shanghai 201306, China)

  • Guoli Zhou

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Yuhao Luo

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Chuntao Geng

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

Abstract

Multitemporal geohazard susceptibility analysis can not only provide reliable results but can also help identify the differences in the mechanisms of different elements under different temporal and spatial backgrounds, so as to better accurately prevent and control geohazards. Here, we studied the 12 counties (cities) that were severely affected by the Wenchuan earthquake of 12 May 2008. Our study was divided into four time periods: 2008, 2009–2012, 2013, and 2014–2017. Common geohazards in the study area, such as landslides, collapses and debris flows, were taken into account. We constructed a geohazard susceptibility index evaluation system that included topography, geology, land cover, meteorology, hydrology, and human activities. Then we used a random forest model to study the changes in geohazard susceptibility during the Wenchuan earthquake, the following ten years, and its driving mechanisms. We had four main findings. (1) The susceptibility of geohazards from 2008 to 2017 gradually increased and their spatial distribution was significantly correlated with the main faults and rivers. (2) The Yingxiu-Beichuan Fault, the western section of the Jiangyou-Dujiangyan Fault, and the Minjiang and Fujiang rivers were highly susceptible to geohazards, and changes in geohazard susceptibility mainly occurred along the Pingwu-Qingchuan Fault, the eastern section of the Jiangyou-Dujiangyan Fault, and the riparian areas of the Mianyuan River, Zagunao River, Tongkou River, Baicao River, and other secondary rivers. (3) The relative contribution of topographic factors to geohazards in the four different periods was stable, geological factors slowly decreased, and meteorological and hydrological factors increased. In addition, the impact of land cover in 2008 was more significant than during other periods, and the impact of human activities had an upward trend from 2008 to 2017. (4) Elevation and slope had significant topographical effects, coupled with the geological environmental effects of engineering rock groups and faults, and river-derived effects, which resulted in a spatial aggregation of geohazard susceptibility. We attributed the dynamic changes in the areas that were highly susceptible to geohazards around the faults and rivers to the changes in the intensity of earthquakes and precipitation in different periods.

Suggested Citation

  • Shuai Li & Zhongyun Ni & Yinbing Zhao & Wei Hu & Zhenrui Long & Haiyu Ma & Guoli Zhou & Yuhao Luo & Chuntao Geng, 2022. "Susceptibility Analysis of Geohazards in the Longmen Mountain Region after the Wenchuan Earthquake," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3229-:d:767490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/6/3229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/6/3229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Qianwen & Gao, Wujun & Su, Shiliang & Weng, Min & Cai, Zhongliang, 2017. "Biophysical and socioeconomic determinants of tea expansion: Apportioning their relative importance for sustainable land use policy," Land Use Policy, Elsevier, vol. 68(C), pages 438-447.
    2. Yue Wang & Deliang Sun & Haijia Wen & Hong Zhang & Fengtai Zhang, 2020. "Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China)," IJERPH, MDPI, vol. 17(12), pages 1-39, June.
    3. Xianyu Yu & Yi Wang & Ruiqing Niu & Youjian Hu, 2016. "A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, Chin," IJERPH, MDPI, vol. 13(5), pages 1-35, May.
    4. Viet-Ha Nhu & Ayub Mohammadi & Himan Shahabi & Baharin Bin Ahmad & Nadhir Al-Ansari & Ataollah Shirzadi & John J. Clague & Abolfazl Jaafari & Wei Chen & Hoang Nguyen, 2020. "Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment," IJERPH, MDPI, vol. 17(14), pages 1-23, July.
    5. Mingze Li & Jun Lv & Xin Chen & Nan Jiang, 2015. "Provincial evaluation of vulnerability to geological disaster in China and its influencing factors: a three-stage DEA-based analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1649-1662, December.
    6. Soyoung Park & Se-Yeong Hamm & Jinsoo Kim, 2019. "Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest, and Rotation Forest for Landslide Susceptibility Modeling," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    7. N. Zhou & S. Zhao, 2013. "Urbanization process and induced environmental geological hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 797-810, June.
    8. Jun Yang & Jinhong Chen & Huiliang Liu & Jingchen Zheng, 2014. "Comparison of two large earthquakes in China: the 2008 Sichuan Wenchuan Earthquake and the 2013 Sichuan Lushan Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 1127-1136, September.
    9. Vahed Ghiasi & Seyed Amir Reza Ghasemi & Mahyar Yousefi, 2021. "Landslide susceptibility mapping through continuous fuzzification and geometric average multi-criteria decision-making approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 795-808, May.
    10. Renjie Zhao & Shihu Zhong & Aiping He, 2018. "Disaster Impact, National Aid, and Economic Growth: Evidence from the 2008 Wenchuan Earthquake," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiye Wang & Chuanming Ma & Yang Qiu & Hanxiang Xiong & Minghong Li, 2022. "Refined Zoning of Landslide Susceptibility: A Case Study in Enshi County, Hubei, China," IJERPH, MDPI, vol. 19(15), pages 1-22, August.
    2. Yan-Ning Wang & Han Chen & Bin-Song Jiang & Jing-Rui Peng & Jun Chen, 2022. "Cause Analysis and Preventive Measures of Guizhou D2809 Train Derailment Accident in Guizhou, China on 4 June 2022," IJERPH, MDPI, vol. 19(24), pages 1-14, December.
    3. Hao Mei & Jin Yang & Mingshun Xiang & Xiaofeng Yang & Chunjian Wang & Wenheng Li & Suhua Yang, 2022. "Evaluation and Optimization Model of Rural Settlement Habitability in the Upper Reaches of the Minjiang River, China," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    4. Shuai Li & Haiyu Ma & Di Yang & Wei Hu & Hao Li, 2023. "The Main Drivers of Wetland Evolution in the Beijing-Tianjin-Hebei Plain," Land, MDPI, vol. 12(2), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sutapa Chaudhuri & Arumita Roy Chowdhury & Payel Das, 2018. "Implementation of Sugeno: ANFIS for forecasting the seismic moment of large earthquakes over Indo-Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 391-405, January.
    2. Xiaobing Yu & Hong Chen & Chenliang Li, 2019. "Evaluate Typhoon Disasters in 21st Century Maritime Silk Road by Super-Efficiency DEA," IJERPH, MDPI, vol. 16(9), pages 1-10, May.
    3. Yumiao Wang & Xueling Wu & Zhangjian Chen & Fu Ren & Luwei Feng & Qingyun Du, 2019. "Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China," IJERPH, MDPI, vol. 16(3), pages 1-27, January.
    4. Yen-Yu Chiu & Hiroshi Omura & Hung-En Chen & Su-Chin Chen, 2020. "Indicators for Post-Disaster Search and Rescue Efficiency Developed Using Progressive Death Tolls," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    5. Ge, Dazhuan & Long, Hualou & Zhang, Yingnan & Ma, Li & Li, Tingting, 2018. "Farmland transition and its influences on grain production in China," Land Use Policy, Elsevier, vol. 70(C), pages 94-105.
    6. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    7. Testa, Patrick A., 2021. "Shocks and the spatial distribution of economic activity: The role of institutions," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 791-810.
    8. Arezoo Mokhtari & Behnam Tashayo & Kaveh Deilami, 2021. "Implications of Nonstationary Effect on Geographically Weighted Total Least Squares Regression for PM 2.5 Estimation," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    9. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    10. Abhik Saha & Vasanta Govind Kumar Villuri & Ashutosh Bhardwaj, 2022. "Development and Assessment of GIS-Based Landslide Susceptibility Mapping Models Using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India," Land, MDPI, vol. 11(10), pages 1-27, October.
    11. Bo Cao & Qingyi Li & Yuhang Zhu, 2022. "Comparison of Effects between Different Weight Calculation Methods for Improving Regional Landslide Susceptibility—A Case Study from Xingshan County of China," Sustainability, MDPI, vol. 14(17), pages 1-15, September.
    12. Changgen Xia & Daolong Chen & Wei He & Huini Liu & Xiling Liu, 2022. "Research on Maximum Likelihood b Value and Confidence Limits Estimation in Doubly Truncated Apparent Frequency–Amplitude Distribution in Rock Acoustic Emission Tests," Mathematics, MDPI, vol. 10(14), pages 1-13, July.
    13. Mustafa Kamal & Baolei Zhang & Jianfei Cao & Xin Zhang & Jun Chang, 2022. "Comparative Study of Artificial Neural Network and Random Forest Model for Susceptibility Assessment of Landslides Induced by Earthquake in the Western Sichuan Plateau, China," Sustainability, MDPI, vol. 14(21), pages 1-14, October.
    14. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    15. Pengyu Chen, 2022. "Analysis of the post-earthquake economic recovery of the most severely affected areas in the 2008 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2633-2655, December.
    16. Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.
    17. Hussam Al-Bilbisi, 2019. "Spatial Monitoring of Urban Expansion Using Satellite Remote Sensing Images: A Case Study of Amman City, Jordan," Sustainability, MDPI, vol. 11(8), pages 1-14, April.
    18. Yongwei Li & Xianmin Wang & Hang Mao, 2020. "Influence of human activity on landslide susceptibility development in the Three Gorges area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2115-2151, December.
    19. Soyoung Park & Jinsoo Kim, 2021. "The Predictive Capability of a Novel Ensemble Tree-Based Algorithm for Assessing Groundwater Potential," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    20. Shi-yu Hu & Miao Yu & Ting Que & Gang Fan & Hui-ge Xing, 2022. "Individual willingness to prepare for disasters in a geological hazard risk area: an empirical study based on the protection motivation theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2087-2111, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3229-:d:767490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.