IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7787-d416739.html
   My bibliography  Save this article

Seismic Vulnerability Assessment and Mapping of Gyeongju, South Korea Using Frequency Ratio, Decision Tree, and Random Forest

Author

Listed:
  • Jihye Han

    (Geomatics Research Institute, Pukyong National University, 45 Yongso-ro, Busan 48513, Korea)

  • Jinsoo Kim

    (Department of Spatial Information System, Pukyong National University, 45 Yongso-ro, Busan 48513, Korea)

  • Soyoung Park

    (Geomatics Research Institute, Pukyong National University, 45 Yongso-ro, Busan 48513, Korea)

  • Sanghun Son

    (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University, 45 Yongso-ro, Busan 48513, Korea)

  • Minji Ryu

    (Division of Earth Environmental System Science (Major of Spatial Information Engineering), Pukyong National University, 45 Yongso-ro, Busan 48513, Korea)

Abstract

The main purpose of this study was to compare the prediction accuracies of various seismic vulnerability assessment and mapping methods. We applied the frequency ratio (FR), decision tree (DT), and random forest (RF) methods to seismic data for Gyeongju, South Korea. A magnitude 5.8 earthquake occurred in Gyeongju on 12 September 2016. Buildings damaged during the earthquake were used as dependent variables, and 18 sub-indicators related to seismic vulnerability were used as independent variables. Seismic data were used to construct a model for each method, and the models’ results and prediction accuracies were validated using receiver operating characteristic (ROC) curves. The success rates of the FR, DT, and RF models were 0.661, 0.899, and 1.000, and their prediction rates were 0.655, 0.851, and 0.949, respectively. The importance of each indicator was determined, and the peak ground acceleration (PGA) and distance to epicenter were found to have the greatest impact on seismic vulnerability in the DT and RF models. The constructed models were applied to all buildings in Gyeongju to derive prediction values, which were then normalized to between 0 and 1, and then divided into five classes at equal intervals to create seismic vulnerability maps. An analysis of the class distribution of building damage in each of the 23 administrative districts showed that district 15 (Wolseong) was the most vulnerable area and districts 2 (Gangdong), 18 (Yangbuk), and 23 (Yangnam) were the safest areas.

Suggested Citation

  • Jihye Han & Jinsoo Kim & Soyoung Park & Sanghun Son & Minji Ryu, 2020. "Seismic Vulnerability Assessment and Mapping of Gyeongju, South Korea Using Frequency Ratio, Decision Tree, and Random Forest," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7787-:d:416739
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7787/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7787/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaghayegh Miraki & Sasan Hedayati Zanganeh & Kamran Chapi & Vijay P. Singh & Ataollah Shirzadi & Himan Shahabi & Binh Thai Pham, 2019. "Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 281-302, January.
    2. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    3. Taskin Kavzoglu & Emrehan Kutlug Sahin & Ismail Colkesen, 2015. "An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 471-496, March.
    4. Md Sohel Ahmed & Hiroshi Morita, 2018. "An Analysis of Housing Structures’ Earthquake Vulnerability in Two Parts of Dhaka City," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    5. Betül Şengezer & Atilla Ansal & Ömer Bilen, 2008. "Evaluation of parameters affecting earthquake damage by decision tree techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 547-568, December.
    6. Jihye Han & Soyoung Park & Seongheon Kim & Sanghun Son & Seonghyeok Lee & Jinsoo Kim, 2019. "Performance of Logistic Regression and Support Vector Machines for Seismic Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    7. Blake Walker & Cameron Taylor-Noonan & Alan Tabbernor & T’Brenn McKinnon & Harsimran Bal & Dan Bradley & Nadine Schuurman & John Clague, 2014. "A multi-criteria evaluation model of earthquake vulnerability in Victoria, British Columbia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 1209-1222, November.
    8. Penjani Hopkins Nyimbili & Turan Erden & Himmet Karaman, 2018. "Integration of GIS, AHP and TOPSIS for earthquake hazard analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1523-1546, July.
    9. Abdelheq Guettiche & Philippe Guéguen & Mostefa Mimoune, 2017. "Seismic vulnerability assessment using association rule learning: application to the city of Constantine, Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1223-1245, April.
    10. Soyoung Park & Se-Yeong Hamm & Jinsoo Kim, 2019. "Performance Evaluation of the GIS-Based Data-Mining Techniques Decision Tree, Random Forest, and Rotation Forest for Landslide Susceptibility Modeling," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    11. Ismaël Riedel & Philippe Guéguen & Mauro Dalla Mura & Erwan Pathier & Thomas Leduc & Jocelyn Chanussot, 2015. "Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1111-1141, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre B. Gonçalves, 2021. "Spatial Analysis and Geographic Information Systems as Tools for Sustainability Research," Sustainability, MDPI, vol. 13(2), pages 1-3, January.
    2. Hemal Dey & Wanyun Shao & Hamid Moradkhani & Barry D. Keim & Brad G. Peter, 2024. "Urban flood susceptibility mapping using frequency ratio and multiple decision tree-based machine learning models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(11), pages 10365-10393, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihye Han & Soyoung Park & Seongheon Kim & Sanghun Son & Seonghyeok Lee & Jinsoo Kim, 2019. "Performance of Logistic Regression and Support Vector Machines for Seismic Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    2. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    3. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.
    4. Dieu Tien Bui & Ataollah Shirzadi & Ata Amini & Himan Shahabi & Nadhir Al-Ansari & Shahriar Hamidi & Sushant K. Singh & Binh Thai Pham & Baharin Bin Ahmad & Pezhman Taherei Ghazvinei, 2020. "A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    5. Binh Thai Pham & Ataollah Shirzadi & Himan Shahabi & Ebrahim Omidvar & Sushant K. Singh & Mehebub Sahana & Dawood Talebpour Asl & Baharin Bin Ahmad & Nguyen Kim Quoc & Saro Lee, 2019. "Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
    6. Yuxin Gao & Xianrui Yu & Menghao Xi & Qiuhong Zhao, 2023. "Assessment of Vulnerability Caused by Earthquake Disasters Based on DEA: A Case Study of County-Level Units in Chinese Mainland," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    7. Jian Ma & Anirudh Rao & Vitor Silva & Kai Liu & Ming Wang, 2021. "A township-level exposure model of residential buildings for mainland China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 389-423, August.
    8. Md. Abul Kalam Azad & Abu Reza Md. Towfiqul Islam & Md. Siddiqur Rahman & Kurratul Ayen, 2021. "Development of novel hybrid machine learning models for monthly thunderstorm frequency prediction over Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1109-1135, August.
    9. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    10. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    11. Saeideh Samani & Meysam Vadiati & Farahnaz Azizi & Efat Zamani & Ozgur Kisi, 2022. "Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3627-3647, August.
    12. Mohamed Abdelkareem & Abbas M. Mansour, 2023. "Risk assessment and management of vulnerable areas to flash flood hazards in arid regions using remote sensing and GIS-based knowledge-driven techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2269-2295, July.
    13. Di Wang & Mengmeng Hao & Shuai Chen & Ze Meng & Dong Jiang & Fangyu Ding, 2021. "Assessment of landslide susceptibility and risk factors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3045-3059, September.
    14. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    15. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    16. Eliana Fischer & Giovanni Barreca & Annalisa Greco & Francesco Martinico & Alessandro Pluchino & Andrea Rapisarda, 2023. "Seismic risk assessment of a large metropolitan area by means of simulated earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 117-153, August.
    17. Dingli Liu & Zhisheng Xu & Chuangang Fan, 2019. "Predictive analysis of fire frequency based on daily temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1175-1189, July.
    18. Xin Wei & Niaz Muhammad Shahani & Xigui Zheng, 2023. "Predictive Modeling of the Uniaxial Compressive Strength of Rocks Using an Artificial Neural Network Approach," Mathematics, MDPI, vol. 11(7), pages 1-17, March.
    19. Yongwei Li & Xianmin Wang & Hang Mao, 2020. "Influence of human activity on landslide susceptibility development in the Three Gorges area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2115-2151, December.
    20. Contreras, Diana & Bhamidipati, Srirama & Wilkinson, Sean, 2023. "Social vulnerability and spatial inequality in access to healthcare facilities: The case of the Santiago Metropolitan Region (RMS), Chile," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7787-:d:416739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.