IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v18y2003i3p505-520.html
   My bibliography  Save this article

Stability and scalability in decision trees

Author

Listed:
  • Tomàs Aluja-Banet
  • Eduard Nafria

Abstract

Tree-based methods are statistical procedures for automatic learning from data, whose main applications are integrated into a data-mining environment for decision support systems. Here, we focus on two problems of decision trees: the stability of the rules obtained and their applicability to huge data sets. Since the tree-growing process is highly dependent on data, i.e. small fluctuations in data can cause big changes in the tree-growing process, we focused instead on the stability of the trees themselves. To this end we propose a series of data diagnostics to prevent internal instability in the tree-growing process before a particular split is made. Indeed, to be effective in actual managerial problems they must be applicable to massive amounts of stored data with maximum efficiency. For this reason we studied the theoretical complexity of such an algorithm. Finally, we present an algorithm that can cope with such problems, with linear cost upon the individuals, which can use a robust impurity measure as a splitting criterion. Copyright Physica-Verlag 2003

Suggested Citation

  • Tomàs Aluja-Banet & Eduard Nafria, 2003. "Stability and scalability in decision trees," Computational Statistics, Springer, vol. 18(3), pages 505-520, September.
  • Handle: RePEc:spr:compst:v:18:y:2003:i:3:p:505-520
    DOI: 10.1007/BF03354613
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF03354613
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF03354613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudio Conversano & Francesco Mola & Roberta Siciliano, 2001. "Partitioning Algorithms and Combined Model Integration for Data Mining," Computational Statistics, Springer, vol. 16(3), pages 323-339, September.
    2. Ciampi, Antonio, 1991. "Generalized regression trees," Computational Statistics & Data Analysis, Elsevier, vol. 12(1), pages 57-78, August.
    3. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivanna Baturynska & Kristian Martinsen, 2021. "Prediction of geometry deviations in additive manufactured parts: comparison of linear regression with machine learning algorithms," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 179-200, January.
    2. Elena Ballante & Marta Galvani & Pierpaolo Uberti & Silvia Figini, 2021. "Polarized Classification Tree Models: Theory and Computational Aspects," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 481-499, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christophe Dutang & Quentin Guibert, 2021. "An explicit split point procedure in model-based trees allowing for a quick fitting of GLM trees and GLM forests," Post-Print hal-03448250, HAL.
    2. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    3. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    4. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    5. Ghosh, Atish R. & Qureshi, Mahvash S. & Kim, Jun Il & Zalduendo, Juan, 2014. "Surges," Journal of International Economics, Elsevier, vol. 92(2), pages 266-285.
      • Mahvash S Qureshi & Mr. Atish R. Ghosh & Mr. Juan Zalduendo & Mr. Jun I Kim, 2012. "Surges," IMF Working Papers 2012/022, International Monetary Fund.
    6. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    7. Schwartz, Ira M. & York, Peter & Nowakowski-Sims, Eva & Ramos-Hernandez, Ana, 2017. "Predictive and prescriptive analytics, machine learning and child welfare risk assessment: The Broward County experience," Children and Youth Services Review, Elsevier, vol. 81(C), pages 309-320.
    8. Yousaf Muhammad & Dey Sandeep Kumar, 2022. "Best proxy to determine firm performance using financial ratios: A CHAID approach," Review of Economic Perspectives, Sciendo, vol. 22(3), pages 219-239, September.
    9. Ralf Elsner & Manfred Krafft & Arnd Huchzermeier, 2003. "Optimizing Rhenania's Mail-Order Business Through Dynamic Multilevel Modeling (DMLM)," Interfaces, INFORMS, vol. 33(1), pages 50-66, February.
    10. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    11. Osman Taylan & Abdulaziz S. Alkabaa & Mustafa Tahsin Yılmaz, 2022. "Impact of COVID-19 on G20 countries: analysis of economic recession using data mining approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    12. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
    13. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    14. Vicente-Cera, Isaías & Acevedo-Merino, Asunción & Nebot, Enrique & López-Ramírez, Juan Antonio, 2020. "Analyzing cruise ship itineraries patterns and vessels diversity in ports of the European maritime region: A hierarchical clustering approach," Journal of Transport Geography, Elsevier, vol. 85(C).
    15. Edward Kozłowski & Anna Borucka & Andrzej Świderski & Przemysław Skoczyński, 2021. "Classification Trees in the Assessment of the Road–Railway Accidents Mortality," Energies, MDPI, vol. 14(12), pages 1-15, June.
    16. Javad Hassannataj Joloudari & Edris Hassannataj Joloudari & Hamid Saadatfar & Mohammad Ghasemigol & Seyyed Mohammad Razavi & Amir Mosavi & Narjes Nabipour & Shahaboddin Shamshirband & Laszlo Nadai, 2020. "Coronary Artery Disease Diagnosis; Ranking the Significant Features Using a Random Trees Model," IJERPH, MDPI, vol. 17(3), pages 1-24, January.
    17. Lea Piscitelli & Annalisa De Boni & Rocco Roma & Giovanni Ottomano Palmisano, 2023. "Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production," Land, MDPI, vol. 13(1), pages 1-16, December.
    18. van Riessen, B. & Negenborn, R.R. & Dekker, R., 2016. "Real-time Container Transport Planning with Decision Trees based on Offline Obtained Optimal Solutions," Econometric Institute Research Papers EI2016-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Jonathan Zufferey, 2016. "Investigating the migrant mortality advantage at the intersections of social stratification in Switzerland," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(32), pages 899-926.
    20. Fatima Zahra Azayite & Said Achchab, 2019. "A hybrid neural network model based on improved PSO and SA for bankruptcy prediction," Papers 1907.12179, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:18:y:2003:i:3:p:505-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.