IDEAS home Printed from https://ideas.repec.org/a/vrs/reoecp/v22y2022i3p219-239n3.html
   My bibliography  Save this article

Best proxy to determine firm performance using financial ratios: A CHAID approach

Author

Listed:
  • Yousaf Muhammad

    (Faculty of Management and Economics, Tomas Bata University in Zlin, Mostni 5139, Zlin 76001, Czech Republic)

  • Dey Sandeep Kumar

    (Faculty of Management and Economics, Tomas Bata University in Zlin, Mostni 5139, Zlin 76001, Czech Republic, and Czech Mathematical Society, Prague, Czech Republic)

Abstract

The main purpose of this study is to investigate the best predictor of firm performance among different proxies. A sample of 287 Czech firms was taken from automobile, construction, and manufacturing sectors. Panel data of the firms was acquired from the Albertina database for the time period from 2016 to 2020. Three different proxies of firm performance, return of assets (RoA), return of equity (RoE), and return of capital employed (RoCE) were used as dependent variables. Including three proxies of firm’s performance, 16 financial ratios were measured based on the previous literature. A machine learning-based decision tree algorithm, Chi-squared Automatic Interaction Detector (CHAID), was deployed to gauge each proxy’s efficacy and examine the best proxy of the firm performance. A partitioning rule of 70:30 was maintained, which implied that 70% of the dataset was used for training and the remaining 30% for testing. The results revealed that return on assets (RoA) was detected to be a robust proxy to predict financial performance among the targeted indicators. The results and the methodology will be useful for policy-makers, stakeholders, academics and managers to take strategic business decisions and forecast financial performance.

Suggested Citation

  • Yousaf Muhammad & Dey Sandeep Kumar, 2022. "Best proxy to determine firm performance using financial ratios: A CHAID approach," Review of Economic Perspectives, Sciendo, vol. 22(3), pages 219-239, September.
  • Handle: RePEc:vrs:reoecp:v:22:y:2022:i:3:p:219-239:n:3
    DOI: 10.2478/revecp-2022-0010
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/revecp-2022-0010
    Download Restriction: no

    File URL: https://libkey.io/10.2478/revecp-2022-0010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gaurav Jyoti & Ashu Khanna, 2021. "Does sustainability performance impact financial performance? Evidence from Indian service sector firms," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1086-1095, November.
    2. G. V. Kass, 1980. "An Exploratory Technique for Investigating Large Quantities of Categorical Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(2), pages 119-127, June.
    3. Mohamed Abdel-Basset & Weiping Ding & Rehab Mohamed & Noura Metawa, 2020. "An integrated plithogenic MCDM approach for financial performance evaluation of manufacturing industries," Risk Management, Palgrave Macmillan, vol. 22(3), pages 192-218, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    2. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    3. Ghosh, Atish R. & Qureshi, Mahvash S. & Kim, Jun Il & Zalduendo, Juan, 2014. "Surges," Journal of International Economics, Elsevier, vol. 92(2), pages 266-285.
      • Mahvash S Qureshi & Mr. Atish R. Ghosh & Mr. Juan Zalduendo & Mr. Jun I Kim, 2012. "Surges," IMF Working Papers 2012/022, International Monetary Fund.
    4. Tomàs Aluja-Banet & Eduard Nafria, 2003. "Stability and scalability in decision trees," Computational Statistics, Springer, vol. 18(3), pages 505-520, September.
    5. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    6. Schwartz, Ira M. & York, Peter & Nowakowski-Sims, Eva & Ramos-Hernandez, Ana, 2017. "Predictive and prescriptive analytics, machine learning and child welfare risk assessment: The Broward County experience," Children and Youth Services Review, Elsevier, vol. 81(C), pages 309-320.
    7. Ralf Elsner & Manfred Krafft & Arnd Huchzermeier, 2003. "Optimizing Rhenania's Mail-Order Business Through Dynamic Multilevel Modeling (DMLM)," Interfaces, INFORMS, vol. 33(1), pages 50-66, February.
    8. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    9. Osman Taylan & Abdulaziz S. Alkabaa & Mustafa Tahsin Yılmaz, 2022. "Impact of COVID-19 on G20 countries: analysis of economic recession using data mining approaches," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-30, December.
    10. Archana R. Panhalkar & Dharmpal D. Doye, 2020. "An approach of improving decision tree classifier using condensed informative data," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 47(4), pages 431-445, December.
    11. Bas Donkers & Richard Paap & Jedid‐Jah Jonker & Philip Hans Franses, 2006. "Deriving target selection rules from endogenously selected samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 549-562, July.
    12. Vicente-Cera, Isaías & Acevedo-Merino, Asunción & Nebot, Enrique & López-Ramírez, Juan Antonio, 2020. "Analyzing cruise ship itineraries patterns and vessels diversity in ports of the European maritime region: A hierarchical clustering approach," Journal of Transport Geography, Elsevier, vol. 85(C).
    13. Edward Kozłowski & Anna Borucka & Andrzej Świderski & Przemysław Skoczyński, 2021. "Classification Trees in the Assessment of the Road–Railway Accidents Mortality," Energies, MDPI, vol. 14(12), pages 1-15, June.
    14. Javad Hassannataj Joloudari & Edris Hassannataj Joloudari & Hamid Saadatfar & Mohammad Ghasemigol & Seyyed Mohammad Razavi & Amir Mosavi & Narjes Nabipour & Shahaboddin Shamshirband & Laszlo Nadai, 2020. "Coronary Artery Disease Diagnosis; Ranking the Significant Features Using a Random Trees Model," IJERPH, MDPI, vol. 17(3), pages 1-24, January.
    15. Deepa Sharma & Suman Chakraborty & Ashwath Ananda Rao & Lumen Shawn Lobo, 2023. "The Relationship of Corporate Social Responsibility and Firm Performance: A Bibliometric Overview," SAGE Open, , vol. 13(1), pages 21582440231, March.
    16. Lea Piscitelli & Annalisa De Boni & Rocco Roma & Giovanni Ottomano Palmisano, 2023. "Carbon Farming: How to Support Farmers in Choosing the Best Management Strategies for Low-Impact Food Production," Land, MDPI, vol. 13(1), pages 1-16, December.
    17. van Riessen, B. & Negenborn, R.R. & Dekker, R., 2016. "Real-time Container Transport Planning with Decision Trees based on Offline Obtained Optimal Solutions," Econometric Institute Research Papers EI2016-14, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Jonathan Zufferey, 2016. "Investigating the migrant mortality advantage at the intersections of social stratification in Switzerland," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(32), pages 899-926.
    19. Fatima Zahra Azayite & Said Achchab, 2019. "A hybrid neural network model based on improved PSO and SA for bankruptcy prediction," Papers 1907.12179, arXiv.org.
    20. Faruk Dayi & Ali Cilesiz & Mustafa Yucel, 2024. "Strategic Management of Clean Energy Investments: Financial Performance Insights by Using BWM-based VIKOR and TOPSIS Methods," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 566-574, September.

    More about this item

    Keywords

    Czech firms; Decision tree; financial ratios; firm performance; return on assets;
    All these keywords.

    JEL classification:

    • G00 - Financial Economics - - General - - - General
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:reoecp:v:22:y:2022:i:3:p:219-239:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.