IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5432-d272423.html
   My bibliography  Save this article

Order Acceptance and Scheduling Problem with Carbon Emission Reduction and Electricity Tariffs on a Single Machine

Author

Listed:
  • Shih-Hsin Chen

    (Department of Information Management, Cheng Shiu University, Kaohsiung 833, Taiwan
    Current address: No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan.
    These authors contributed equally to this work.)

  • Yeong-Cheng Liou

    (Department of Healthcare Administration and Medical Informatics, Research Center of Nonlinear Analysis and Optimization, Kaohsiung Medical University, Kaohsiung 807, Taiwan
    These authors contributed equally to this work.)

  • Yi-Hui Chen

    (Department of Information Management, Chang Gung University, Taoyuan City 333, Taiwan
    These authors contributed equally to this work.)

  • Kun-Ching Wang

    (Department of Information Technology & Communication, Shih Chien University, Kaohsiung City 845, Taiwan
    These authors contributed equally to this work.)

Abstract

Order acceptance and scheduling (OAS) problems are realistic for enterprises. They have to select the appropriate orders according to their capacity limitations and profit consideration, and then complete these orders by their due dates or no later than their deadlines. OAS problems have attracted significant attention in supply chain management. However, there is an issue that has not been studied well. To our best knowledge, no prior research examines the carbon emission cost and the time-of-use electricity cost in the OAS problems. The carbon emission during the on-peak hours is lower than the one in mid-peak and off-peak hours. However, the electricity cost during the on-peak hours is higher than the one during mid-peak and off-peak hours when time-of-use electricity (TOU) tariff is used. There is a trade-off between sustainable scheduling and the electricity cost. To calculate the objective value, a carbon tax and carbon dioxide emission factor are included when we evaluate the carbon emission cost. The objective function is to maximize the total revenue of the accepted orders and then subtract the carbon emission cost and the electricity cost under different time intervals on a single machine with sequence-dependent setup times and release date. This research proposes a mixed-integer linear programming model (MILP) and a relaxation method of MILP model to solve this problem. It is of importance because the OAS problems are practical in industry. This paper could attract the attention of academic researchers as well as the practitioners.

Suggested Citation

  • Shih-Hsin Chen & Yeong-Cheng Liou & Yi-Hui Chen & Kun-Ching Wang, 2019. "Order Acceptance and Scheduling Problem with Carbon Emission Reduction and Electricity Tariffs on a Single Machine," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5432-:d:272423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5432/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenzhu Liao & Tong Wang, 2019. "A Novel Collaborative Optimization Model for Job Shop Production–Delivery Considering Time Window and Carbon Emission," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    2. Songyi Wang & Fengming Tao & Yuhe Shi & Haolin Wen, 2017. "Optimization of Vehicle Routing Problem with Time Windows for Cold Chain Logistics Based on Carbon Tax," Sustainability, MDPI, vol. 9(5), pages 1-23, April.
    3. Jinghua Li & Hui Guo & Qinghua Zhou & Boxin Yang, 2019. "Vehicle Routing and Scheduling Optimization of Ship Steel Distribution Center under Green Shipbuilding Mode," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    4. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    5. Esmaeilbeigi, Rasul & Charkhgard, Parisa & Charkhgard, Hadi, 2016. "Order acceptance and scheduling problems in two-machine flow shops: New mixed integer programming formulations," European Journal of Operational Research, Elsevier, vol. 251(2), pages 419-431.
    6. Wang, Xiuli & Xie, Xingzi & Cheng, T.C.E., 2013. "Order acceptance and scheduling in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 141(1), pages 366-376.
    7. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    8. Wang, Xiuli & Xie, Xingzi & Cheng, T.C.E., 2013. "A modified artificial bee colony algorithm for order acceptance in two-machine flow shops," International Journal of Production Economics, Elsevier, vol. 141(1), pages 14-23.
    9. Xiuli Wang & Guodong Huang & Xiuwu Hu & T C Edwin Cheng, 2015. "Order acceptance and scheduling on two identical parallel machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(10), pages 1755-1767, October.
    10. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    2. Dar-Li Yang & Wen-Hung Kuo, 2019. "Minimizing Makespan in A Two-Machine Flowshop Problem with Processing Time Linearly Dependent on Job Waiting Time," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    3. R. Micale & C. M. La Fata & M. Enea & G. La Scalia, 2021. "Regenerative scheduling problem in engineer to order manufacturing: an economic assessment," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1913-1925, October.
    4. Fei Zou & Yanju Zhou & Caihua Yuan, 2020. "The Impact of Retailers’ Low-Carbon Investment on the Supply Chain under Carbon Tax and Carbon Trading Policies," Sustainability, MDPI, vol. 12(9), pages 1-27, April.
    5. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2021. "Job Scheduling under Time-of-Use Energy Tariffs for Sustainable Manufacturing: A Survey," LIDAM Discussion Papers CORE 2021019, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiuli & Zhu, Qianqian & Cheng, T.C.E., 2015. "Subcontracting price schemes for order acceptance and scheduling," Omega, Elsevier, vol. 54(C), pages 1-10.
    2. Tarhan, İstenç & Oğuz, Ceyda, 2022. "A matheuristic for the generalized order acceptance and scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 87-103.
    3. Wang, Xiuli & Cheng, T.C.E., 2015. "A heuristic for scheduling jobs on two identical parallel machines with a machine availability constraint," International Journal of Production Economics, Elsevier, vol. 161(C), pages 74-82.
    4. Li, Xin & Ventura, Jose A., 2020. "Exact algorithms for a joint order acceptance and scheduling problem," International Journal of Production Economics, Elsevier, vol. 223(C).
    5. Wang, Xiuli & Geng, Sujie & Cheng, T.C.E., 2018. "Negotiation mechanisms for an order subcontracting and scheduling problem," Omega, Elsevier, vol. 77(C), pages 154-167.
    6. Lei, Deming & Guo, Xiuping, 2015. "A parallel neighborhood search for order acceptance and scheduling in flow shop environment," International Journal of Production Economics, Elsevier, vol. 165(C), pages 12-18.
    7. Esmaeilbeigi, Rasul & Charkhgard, Parisa & Charkhgard, Hadi, 2016. "Order acceptance and scheduling problems in two-machine flow shops: New mixed integer programming formulations," European Journal of Operational Research, Elsevier, vol. 251(2), pages 419-431.
    8. Perea, Federico & Yepes-Borrero, Juan C. & Menezes, Mozart B.C., 2023. "Acceptance Ordering Scheduling Problem: The impact of an order-portfolio on a make-to-order firm’s profitability," International Journal of Production Economics, Elsevier, vol. 264(C).
    9. Hanane Krim & Nicolas Zufferey & Jean-Yves Potvin & Rachid Benmansour & David Duvivier, 2022. "Tabu search for a parallel-machine scheduling problem with periodic maintenance, job rejection and weighted sum of completion times," Journal of Scheduling, Springer, vol. 25(1), pages 89-105, February.
    10. Xiao, Yiyong & Yuan, Yingying & Zhang, Ren-Qian & Konak, Abdullah, 2015. "Non-permutation flow shop scheduling with order acceptance and weighted tardiness," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 312-333.
    11. R. Micale & C. M. La Fata & M. Enea & G. La Scalia, 2021. "Regenerative scheduling problem in engineer to order manufacturing: an economic assessment," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1913-1925, October.
    12. Chen, Wenchong & Gong, Xuejian & Rahman, Humyun Fuad & Liu, Hongwei & Qi, Ershi, 2021. "Real-time order acceptance and scheduling for data-enabled permutation flow shops: Bilevel interactive optimization with nonlinear integer programming," Omega, Elsevier, vol. 105(C).
    13. Naderi, Bahman & Roshanaei, Vahid, 2020. "Branch-Relax-and-Check: A tractable decomposition method for order acceptance and identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 286(3), pages 811-827.
    14. Zhong, Xueling & Ou, Jinwen & Wang, Guoqing, 2014. "Order acceptance and scheduling with machine availability constraints," European Journal of Operational Research, Elsevier, vol. 232(3), pages 435-441.
    15. Wang, Xiuli & Xie, Xingzi & Cheng, T.C.E., 2013. "Order acceptance and scheduling in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 141(1), pages 366-376.
    16. Chun-Lung Chen, 2023. "An Iterated Population-Based Metaheuristic for Order Acceptance and Scheduling in Unrelated Parallel Machines with Several Practical Constraints," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    17. Xin Li & José A. Ventura & Kevin A. Bunn, 2021. "A joint order acceptance and scheduling problem with earliness and tardiness penalties considering overtime," Journal of Scheduling, Springer, vol. 24(1), pages 49-68, February.
    18. Simon Thevenin & Nicolas Zufferey & Marino Widmer, 2016. "Order acceptance and scheduling with earliness and tardiness penalties," Journal of Heuristics, Springer, vol. 22(6), pages 849-890, December.
    19. Lei He & Mathijs Weerdt & Neil Yorke-Smith, 2020. "Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1051-1078, April.
    20. Ren-Xia Chen & Shi-Sheng Li, 2020. "Minimizing maximum delivery completion time for order scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1044-1064, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5432-:d:272423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.