IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v141y2013i1p14-23.html
   My bibliography  Save this article

A modified artificial bee colony algorithm for order acceptance in two-machine flow shops

Author

Listed:
  • Wang, Xiuli
  • Xie, Xingzi
  • Cheng, T.C.E.

Abstract

We consider a two-stage make-to-order production system characterized by limited production capacity and tight order due dates. We want to make joint decisions on order acceptance and scheduling to maximize the total net revenue. The problem is computationally intractable. In view of the fact that artificial bee colony algorithm has been shown to be an effective evolutionary algorithm to handle combinatorial optimization problems, we first conduct a pilot study of applying the basic artificial bee colony algorithm to treat our problem. Based on the results of the pilot study and the problem characteristics, we develop a modified artificial bee colony algorithm. The experimental results show that the modified artificial bee colony algorithm is able to generate good solutions for large-scale problem instances.

Suggested Citation

  • Wang, Xiuli & Xie, Xingzi & Cheng, T.C.E., 2013. "A modified artificial bee colony algorithm for order acceptance in two-machine flow shops," International Journal of Production Economics, Elsevier, vol. 141(1), pages 14-23.
  • Handle: RePEc:eee:proeco:v:141:y:2013:i:1:p:14-23
    DOI: 10.1016/j.ijpe.2012.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527312002307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2012.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajendran, Chandrasekharan & Ziegler, Hans, 2003. "Scheduling to minimize the sum of weighted flowtime and weighted tardiness of jobs in a flowshop with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 149(3), pages 513-522, September.
    2. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    3. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    4. Paolo Toth & Daniele Vigo, 2003. "The Granular Tabu Search and Its Application to the Vehicle-Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(4), pages 333-346, November.
    5. Szeto, W.Y. & Wu, Yongzhong & Ho, Sin C., 2011. "An artificial bee colony algorithm for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 126-135, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiuli & Cheng, T.C.E., 2015. "A heuristic for scheduling jobs on two identical parallel machines with a machine availability constraint," International Journal of Production Economics, Elsevier, vol. 161(C), pages 74-82.
    2. Pan, Quan-Ke & Wang, Ling & Li, Jun-Qing & Duan, Jun-Hua, 2014. "A novel discrete artificial bee colony algorithm for the hybrid flowshop scheduling problem with makespan minimisation," Omega, Elsevier, vol. 45(C), pages 42-56.
    3. Wang, Xiuli & Zhu, Qianqian & Cheng, T.C.E., 2015. "Subcontracting price schemes for order acceptance and scheduling," Omega, Elsevier, vol. 54(C), pages 1-10.
    4. Shih-Hsin Chen & Yeong-Cheng Liou & Yi-Hui Chen & Kun-Ching Wang, 2019. "Order Acceptance and Scheduling Problem with Carbon Emission Reduction and Electricity Tariffs on a Single Machine," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    5. Lei, Deming & Guo, Xiuping, 2015. "A parallel neighborhood search for order acceptance and scheduling in flow shop environment," International Journal of Production Economics, Elsevier, vol. 165(C), pages 12-18.
    6. Esmaeilbeigi, Rasul & Charkhgard, Parisa & Charkhgard, Hadi, 2016. "Order acceptance and scheduling problems in two-machine flow shops: New mixed integer programming formulations," European Journal of Operational Research, Elsevier, vol. 251(2), pages 419-431.
    7. Wang, Sheng-yao & Wang, Ling & Liu, Min & Xu, Ye, 2013. "An effective estimation of distribution algorithm for solving the distributed permutation flow-shop scheduling problem," International Journal of Production Economics, Elsevier, vol. 145(1), pages 387-396.
    8. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    9. Tarhan, İstenç & Oğuz, Ceyda, 2022. "A matheuristic for the generalized order acceptance and scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 87-103.
    10. Naderi, Bahman & Roshanaei, Vahid, 2020. "Branch-Relax-and-Check: A tractable decomposition method for order acceptance and identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 286(3), pages 811-827.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarhan, İstenç & Oğuz, Ceyda, 2022. "A matheuristic for the generalized order acceptance and scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 87-103.
    2. Wang, Xiuli & Cheng, T.C.E., 2015. "A heuristic for scheduling jobs on two identical parallel machines with a machine availability constraint," International Journal of Production Economics, Elsevier, vol. 161(C), pages 74-82.
    3. Wang, Xiuli & Zhu, Qianqian & Cheng, T.C.E., 2015. "Subcontracting price schemes for order acceptance and scheduling," Omega, Elsevier, vol. 54(C), pages 1-10.
    4. Zhong, Xueling & Ou, Jinwen & Wang, Guoqing, 2014. "Order acceptance and scheduling with machine availability constraints," European Journal of Operational Research, Elsevier, vol. 232(3), pages 435-441.
    5. Wang, Xiuli & Xie, Xingzi & Cheng, T.C.E., 2013. "Order acceptance and scheduling in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 141(1), pages 366-376.
    6. Xin Li & José A. Ventura & Kevin A. Bunn, 2021. "A joint order acceptance and scheduling problem with earliness and tardiness penalties considering overtime," Journal of Scheduling, Springer, vol. 24(1), pages 49-68, February.
    7. Li, Xin & Ventura, Jose A., 2020. "Exact algorithms for a joint order acceptance and scheduling problem," International Journal of Production Economics, Elsevier, vol. 223(C).
    8. Simon Thevenin & Nicolas Zufferey & Marino Widmer, 2016. "Order acceptance and scheduling with earliness and tardiness penalties," Journal of Heuristics, Springer, vol. 22(6), pages 849-890, December.
    9. Lei He & Mathijs Weerdt & Neil Yorke-Smith, 2020. "Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1051-1078, April.
    10. Perea, Federico & Yepes-Borrero, Juan C. & Menezes, Mozart B.C., 2023. "Acceptance Ordering Scheduling Problem: The impact of an order-portfolio on a make-to-order firm’s profitability," International Journal of Production Economics, Elsevier, vol. 264(C).
    11. Xiao, Yiyong & Yuan, Yingying & Zhang, Ren-Qian & Konak, Abdullah, 2015. "Non-permutation flow shop scheduling with order acceptance and weighted tardiness," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 312-333.
    12. Wang, Xiuli & Geng, Sujie & Cheng, T.C.E., 2018. "Negotiation mechanisms for an order subcontracting and scheduling problem," Omega, Elsevier, vol. 77(C), pages 154-167.
    13. Ou, Jinwen & Zhong, Xueling & Wang, Guoqing, 2015. "An improved heuristic for parallel machine scheduling with rejection," European Journal of Operational Research, Elsevier, vol. 241(3), pages 653-661.
    14. Jinwen Ou & Xueling Zhong, 2017. "Order acceptance and scheduling with consideration of service level," Annals of Operations Research, Springer, vol. 248(1), pages 429-447, January.
    15. Lei, Deming & Guo, Xiuping, 2015. "A parallel neighborhood search for order acceptance and scheduling in flow shop environment," International Journal of Production Economics, Elsevier, vol. 165(C), pages 12-18.
    16. Esmaeilbeigi, Rasul & Charkhgard, Parisa & Charkhgard, Hadi, 2016. "Order acceptance and scheduling problems in two-machine flow shops: New mixed integer programming formulations," European Journal of Operational Research, Elsevier, vol. 251(2), pages 419-431.
    17. Simon Thevenin & Nicolas Zufferey & Rémy Glardon, 2017. "Model and metaheuristics for a scheduling problem integrating procurement, sale and distribution decisions," Annals of Operations Research, Springer, vol. 259(1), pages 437-460, December.
    18. de Weerdt, Mathijs & Baart, Robert & He, Lei, 2021. "Single-machine scheduling with release times, deadlines, setup times, and rejection," European Journal of Operational Research, Elsevier, vol. 291(2), pages 629-639.
    19. Shih-Hsin Chen & Yeong-Cheng Liou & Yi-Hui Chen & Kun-Ching Wang, 2019. "Order Acceptance and Scheduling Problem with Carbon Emission Reduction and Electricity Tariffs on a Single Machine," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    20. R. Micale & C. M. La Fata & M. Enea & G. La Scalia, 2021. "Regenerative scheduling problem in engineer to order manufacturing: an economic assessment," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1913-1925, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:141:y:2013:i:1:p:14-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.