IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i4d10.1007_s10845-019-01518-4.html
   My bibliography  Save this article

Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm

Author

Listed:
  • Lei He

    (National University of Defense Technology
    Delft University of Technology)

  • Mathijs Weerdt

    (Delft University of Technology)

  • Neil Yorke-Smith

    (Delft University of Technology)

Abstract

In intelligent manufacturing, it is important to schedule orders from customers efficiently. Make-to-order companies may have to reject or postpone orders when the production capacity does not meet the demand. Many such real-world scheduling problems are characterised by processing times being dependent on the start time (time dependency) or on the preceding orders (sequence dependency), and typically have an earliest and latest possible start time. We introduce and analyze four algorithmic ideas for this class of time/sequence-dependent over-subscribed scheduling problems with time windows: a novel hybridization of adaptive large neighbourhood search (ALNS) and tabu search (TS), a new randomization strategy for neighbourhood operators, a partial sequence dominance heuristic, and a fast insertion strategy. Through factor analysis, we demonstrate the performance of these new algorithmic features on problem domains with varying properties. Evaluation of the resulting general purpose algorithm on three domains—an order acceptance and scheduling problem, a real-world multi-orbit agile Earth observation satellite scheduling problem, and a time-dependent orienteering problem with time windows—shows that our hybrid algorithm robustly outperforms general algorithms including a mixed integer programming method, a constraint programming method, recent state-of-the-art problem-dependent meta-heuristic methods, and a two-stage hybridization of ALNS and TS.

Suggested Citation

  • Lei He & Mathijs Weerdt & Neil Yorke-Smith, 2020. "Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1051-1078, April.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01518-4
    DOI: 10.1007/s10845-019-01518-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01518-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01518-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Žulj, Ivan & Kramer, Sergej & Schneider, Michael, 2018. "A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 653-664.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. Chaoqun Duan & Chao Deng & Abolfazl Gharaei & Jun Wu & Bingran Wang, 2018. "Selective maintenance scheduling under stochastic maintenance quality with multiple maintenance actions," International Journal of Production Research, Taylor & Francis Journals, vol. 56(23), pages 7160-7178, December.
    4. Baoxi Wang & Zailin Guan & Saif Ullah & Xianhao Xu & Zongdong He, 2017. "Simultaneous order scheduling and mixed-model sequencing in assemble-to-order production environment: a multi-objective hybrid artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 419-436, February.
    5. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    6. J-F Cordeau & G Laporte, 2005. "Maximizing the value of an Earth observation satellite orbit," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 962-968, August.
    7. Cédric Verbeeck & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "The time-dependent orienteering problem with time windows: a fast ant colony system," Annals of Operations Research, Springer, vol. 254(1), pages 481-505, July.
    8. Christian Prins & Caroline Prodhon & Angel Ruiz & Patrick Soriano & Roberto Wolfler Calvo, 2007. "Solving the Capacitated Location-Routing Problem by a Cooperative Lagrangean Relaxation-Granular Tabu Search Heuristic," Transportation Science, INFORMS, vol. 41(4), pages 470-483, November.
    9. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    10. S-W Lin & K-C Ying, 2013. "Increasing the total net revenue for single machine order acceptance and scheduling problems using an artificial bee colony algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(2), pages 293-311, February.
    11. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    12. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    13. Bianchessi, Nicola & Cordeau, Jean-Francois & Desrosiers, Jacques & Laporte, Gilbert & Raymond, Vincent, 2007. "A heuristic for the multi-satellite, multi-orbit and multi-user management of Earth observation satellites," European Journal of Operational Research, Elsevier, vol. 177(2), pages 750-762, March.
    14. J-F Cordeau & G Laporte & A Mercier, 2001. "A unified tabu search heuristic for vehicle routing problems with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(8), pages 928-936, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvaro Velasquez & P. Wojciechowski & K. Subramani & Matthew Williamson, 2024. "Arc-dependent networks: theoretical insights and a computational study," Annals of Operations Research, Springer, vol. 338(2), pages 1101-1126, July.
    2. G. Cherif & E. Leclercq & D. Lefebvre, 2023. "Scheduling of a class of partial routing FMS in uncertain environments with beam search," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 493-514, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Weerdt, Mathijs & Baart, Robert & He, Lei, 2021. "Single-machine scheduling with release times, deadlines, setup times, and rejection," European Journal of Operational Research, Elsevier, vol. 291(2), pages 629-639.
    2. Wang, Xiuli & Zhu, Qianqian & Cheng, T.C.E., 2015. "Subcontracting price schemes for order acceptance and scheduling," Omega, Elsevier, vol. 54(C), pages 1-10.
    3. Tarhan, İstenç & Oğuz, Ceyda, 2022. "A matheuristic for the generalized order acceptance and scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 87-103.
    4. Xin Li & José A. Ventura & Kevin A. Bunn, 2021. "A joint order acceptance and scheduling problem with earliness and tardiness penalties considering overtime," Journal of Scheduling, Springer, vol. 24(1), pages 49-68, February.
    5. Singh, Nitish & Dang, Quang-Vinh & Akcay, Alp & Adan, Ivo & Martagan, Tugce, 2022. "A matheuristic for AGV scheduling with battery constraints," European Journal of Operational Research, Elsevier, vol. 298(3), pages 855-873.
    6. Li, Xin & Ventura, Jose A., 2020. "Exact algorithms for a joint order acceptance and scheduling problem," International Journal of Production Economics, Elsevier, vol. 223(C).
    7. Goeke, Dominik & Schneider, Michael, 2015. "Routing a mixed fleet of electric and conventional vehicles," European Journal of Operational Research, Elsevier, vol. 245(1), pages 81-99.
    8. Perea, Federico & Yepes-Borrero, Juan C. & Menezes, Mozart B.C., 2023. "Acceptance Ordering Scheduling Problem: The impact of an order-portfolio on a make-to-order firm’s profitability," International Journal of Production Economics, Elsevier, vol. 264(C).
    9. Schneider, Michael & Schwahn, Fabian & Vigo, Daniele, 2017. "Designing granular solution methods for routing problems with time windows," European Journal of Operational Research, Elsevier, vol. 263(2), pages 493-509.
    10. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    11. Michael Schneider & Andreas Stenger & Dominik Goeke, 2014. "The Electric Vehicle-Routing Problem with Time Windows and Recharging Stations," Transportation Science, INFORMS, vol. 48(4), pages 500-520, November.
    12. Wang, Yuan & Lei, Linfei & Zhang, Dongxiang & Lee, Loo Hay, 2020. "Towards delivery-as-a-service: Effective neighborhood search strategies for integrated delivery optimization of E-commerce and static O2O parcels," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 38-63.
    13. Dayarian, Iman & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2016. "An adaptive large-neighborhood search heuristic for a multi-period vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 95-123.
    14. Tangpattanakul, Panwadee & Jozefowiez, Nicolas & Lopez, Pierre, 2015. "A multi-objective local search heuristic for scheduling Earth observations taken by an agile satellite," European Journal of Operational Research, Elsevier, vol. 245(2), pages 542-554.
    15. Goeke, D. & Schneider, M., 2015. "Routing a Mixed Fleet of Electric and Conventional Vehicles," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65939, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Turkeš, Renata & Sörensen, Kenneth & Hvattum, Lars Magnus, 2021. "Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search," European Journal of Operational Research, Elsevier, vol. 292(2), pages 423-442.
    17. Lei, Deming & Guo, Xiuping, 2015. "A parallel neighborhood search for order acceptance and scheduling in flow shop environment," International Journal of Production Economics, Elsevier, vol. 165(C), pages 12-18.
    18. Esmaeilbeigi, Rasul & Charkhgard, Parisa & Charkhgard, Hadi, 2016. "Order acceptance and scheduling problems in two-machine flow shops: New mixed integer programming formulations," European Journal of Operational Research, Elsevier, vol. 251(2), pages 419-431.
    19. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2014. "The fleet size and mix pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 239-254.
    20. Maximilian Schiffer & Grit Walther, 2018. "An Adaptive Large Neighborhood Search for the Location-routing Problem with Intra-route Facilities," Transportation Science, INFORMS, vol. 52(2), pages 331-352, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01518-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.