IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v24y2021i1d10.1007_s10951-020-00672-5.html
   My bibliography  Save this article

A joint order acceptance and scheduling problem with earliness and tardiness penalties considering overtime

Author

Listed:
  • Xin Li

    (The Pennsylvania State University)

  • José A. Ventura

    (The Pennsylvania State University)

  • Kevin A. Bunn

    (The Pennsylvania State University)

Abstract

This paper considers a joint order acceptance and scheduling problem under a general scenario. A manufacturer receives multiple orders with a given revenue, processing time, release date, due date, deadline, and earliness and tardiness penalties. The manufacturer can be seen as a single-machine system. Due to limited capacity, the manufacturer cannot process every order and needs to determine the optimal set of accepted orders and corresponding production schedule such that the total profit is maximized. The manufacturer can extend its capacity with overtime by paying an additional cost. A time-indexed formulation is presented to model the problem. Two exact algorithms are proposed. The first algorithm, denoted by DPIA-GR, is a dynamic programming (DP)-based algorithm that starts by solving a relaxed version of the original model and successively recovers the relaxed constraint until an optimal solution to the original problem is achieved. The second algorithm, denoted by DPIA-LRGR, improves DPIA-GR by incorporating Lagrangian relaxation (LR). The subgradient method is employed to find the optimal Lagrangian multipliers. The relaxed model in DPIA-GR and the LR model in DPIA-LRGR can be represented using a weighted di-graph. Both algorithms are equivalent to finding the longest path in the graph and applying a graph reduction strategy to prevent unnecessary computational time and memory usage. A genetic algorithm (GA) is also proposed to solve large-scale versions of the problem. Numerical experiments show that both DPIA-GR and DPIA-LRGR solve the problem efficiently and outperform CPLEX and GA, but DPIA-LRGR offers better performance.

Suggested Citation

  • Xin Li & José A. Ventura & Kevin A. Bunn, 2021. "A joint order acceptance and scheduling problem with earliness and tardiness penalties considering overtime," Journal of Scheduling, Springer, vol. 24(1), pages 49-68, February.
  • Handle: RePEc:spr:jsched:v:24:y:2021:i:1:d:10.1007_s10951-020-00672-5
    DOI: 10.1007/s10951-020-00672-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-020-00672-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-020-00672-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philipp Melchiors & Roel Leus & Stefan Creemers & Rainer Kolisch, 2018. "Dynamic order acceptance and capacity planning in a stochastic multi-project environment with a bottleneck resource," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 459-475, January.
    2. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
    3. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    4. Mestry, Siddharth & Damodaran, Purushothaman & Chen, Chin-Sheng, 2011. "A branch and price solution approach for order acceptance and capacity planning in make-to-order operations," European Journal of Operational Research, Elsevier, vol. 211(3), pages 480-495, June.
    5. S-W Lin & K-C Ying, 2013. "Increasing the total net revenue for single machine order acceptance and scheduling problems using an artificial bee colony algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(2), pages 293-311, February.
    6. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    7. Zhong, Xueling & Ou, Jinwen & Wang, Guoqing, 2014. "Order acceptance and scheduling with machine availability constraints," European Journal of Operational Research, Elsevier, vol. 232(3), pages 435-441.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaia Nicosia & Andrea Pacifici & Ulrich Pferschy & Julia Resch & Giovanni Righini, 2021. "Optimally rescheduling jobs with a Last-In-First-Out buffer," Journal of Scheduling, Springer, vol. 24(6), pages 663-680, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarhan, İstenç & Oğuz, Ceyda, 2022. "A matheuristic for the generalized order acceptance and scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 87-103.
    2. Li, Xin & Ventura, Jose A., 2020. "Exact algorithms for a joint order acceptance and scheduling problem," International Journal of Production Economics, Elsevier, vol. 223(C).
    3. Joonyup Eun & Chang Sup Sung & Eun-Seok Kim, 2017. "Maximizing total job value on a single machine with job selection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 998-1005, September.
    4. Jinwen Ou & Xueling Zhong, 2017. "Order acceptance and scheduling with consideration of service level," Annals of Operations Research, Springer, vol. 248(1), pages 429-447, January.
    5. Lei, Deming & Guo, Xiuping, 2015. "A parallel neighborhood search for order acceptance and scheduling in flow shop environment," International Journal of Production Economics, Elsevier, vol. 165(C), pages 12-18.
    6. R. Micale & C. M. La Fata & M. Enea & G. La Scalia, 2021. "Regenerative scheduling problem in engineer to order manufacturing: an economic assessment," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1913-1925, October.
    7. Wang, Xiuli & Zhu, Qianqian & Cheng, T.C.E., 2015. "Subcontracting price schemes for order acceptance and scheduling," Omega, Elsevier, vol. 54(C), pages 1-10.
    8. Simon Thevenin & Nicolas Zufferey & Marino Widmer, 2016. "Order acceptance and scheduling with earliness and tardiness penalties," Journal of Heuristics, Springer, vol. 22(6), pages 849-890, December.
    9. Lei He & Mathijs Weerdt & Neil Yorke-Smith, 2020. "Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 1051-1078, April.
    10. Ou, Jinwen & Zhong, Xueling & Wang, Guoqing, 2015. "An improved heuristic for parallel machine scheduling with rejection," European Journal of Operational Research, Elsevier, vol. 241(3), pages 653-661.
    11. Esmaeilbeigi, Rasul & Charkhgard, Parisa & Charkhgard, Hadi, 2016. "Order acceptance and scheduling problems in two-machine flow shops: New mixed integer programming formulations," European Journal of Operational Research, Elsevier, vol. 251(2), pages 419-431.
    12. Somaye Geramipour & Ghasem Moslehi & Mohammad Reisi-Nafchi, 2017. "Maximizing the profit in customer’s order acceptance and scheduling problem with weighted tardiness penalty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 89-101, January.
    13. Wang, Xiuli & Cheng, T.C.E., 2015. "A heuristic for scheduling jobs on two identical parallel machines with a machine availability constraint," International Journal of Production Economics, Elsevier, vol. 161(C), pages 74-82.
    14. Wang, Xiuli & Xie, Xingzi & Cheng, T.C.E., 2013. "Order acceptance and scheduling in a two-machine flowshop," International Journal of Production Economics, Elsevier, vol. 141(1), pages 366-376.
    15. Altendorfer, Klaus & Minner, Stefan, 2015. "Influence of order acceptance policies on optimal capacity investment with stochastic customer required lead times," European Journal of Operational Research, Elsevier, vol. 243(2), pages 555-565.
    16. Belleh Fontem & Megan Price, 2021. "Joint client selection and contract design for a risk-averse commodity broker in a two-echelon supply chain," Annals of Operations Research, Springer, vol. 307(1), pages 111-138, December.
    17. Perea, Federico & Yepes-Borrero, Juan C. & Menezes, Mozart B.C., 2023. "Acceptance Ordering Scheduling Problem: The impact of an order-portfolio on a make-to-order firm’s profitability," International Journal of Production Economics, Elsevier, vol. 264(C).
    18. Hanane Krim & Nicolas Zufferey & Jean-Yves Potvin & Rachid Benmansour & David Duvivier, 2022. "Tabu search for a parallel-machine scheduling problem with periodic maintenance, job rejection and weighted sum of completion times," Journal of Scheduling, Springer, vol. 25(1), pages 89-105, February.
    19. Wang, Xiuli & Geng, Sujie & Cheng, T.C.E., 2018. "Negotiation mechanisms for an order subcontracting and scheduling problem," Omega, Elsevier, vol. 77(C), pages 154-167.
    20. Li, Weidong & Ou, Jinwen, 2024. "Machine scheduling with restricted rejection: An Application to task offloading in cloud–edge collaborative computing," European Journal of Operational Research, Elsevier, vol. 314(3), pages 912-919.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:24:y:2021:i:1:d:10.1007_s10951-020-00672-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.