IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i11p4304-d184201.html
   My bibliography  Save this article

Effects of Multiple Supplementary Cementitious Materials on Workability and Segregation Resistance of Lightweight Aggregate Concrete

Author

Listed:
  • Afonso Miguel Solak

    (Department of Civil Engineering, University of Alicante, 03080 Alicante, Spain)

  • Antonio José Tenza-Abril

    (Department of Civil Engineering, University of Alicante, 03080 Alicante, Spain)

  • José Miguel Saval

    (Department of Civil Engineering, University of Alicante, 03080 Alicante, Spain)

  • Victoria Eugenia García-Vera

    (Departamento de Arquitectura y Tecnología de la Edificación, Universidad Politécnica de Cartagena, 30203 Murcia, Spain)

Abstract

In view of the global sustainable development, it is imperative that supplementary cementing materials (SCM) be used for replacing cement in the concrete industry and several researchers have shown that mineral admixtures can enhance the workability of lightweight aggregate concrete (LWAC) mixture and its strength. In view of the beneficial effects of using SCM in LWAC, this article aims to verify the possible influence of the use of different types of SCM in the segregation phenomenon of LWAC. Three different SCM were studied: Silica Fume (SF), Fly Ash (FA) and Posidonia oceanica Ash (PA). For each SCM, three mixtures were prepared, considering three different percentage substitutions of cement. An image analysis technique was applied to estimate the segregation in each sample. The results show that a substitution of cement by other materials with different grain size, considering a constant water binder ratio, may also result in a variation of the consistency of concrete and the viscosity of the mortar matrix, which may contribute to increase or reduce segregation.

Suggested Citation

  • Afonso Miguel Solak & Antonio José Tenza-Abril & José Miguel Saval & Victoria Eugenia García-Vera, 2018. "Effects of Multiple Supplementary Cementitious Materials on Workability and Segregation Resistance of Lightweight Aggregate Concrete," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4304-:d:184201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/11/4304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/11/4304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Fouad Alnahhal & Ubagaram Johnson Alengaram & Mohd Zamin Jumaat & Mamoun A. Alqedra & Kim Hung Mo & Mathialagan Sumesh, 2017. "Evaluation of Industrial By-Products as Sustainable Pozzolanic Materials in Recycled Aggregate Concrete," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    2. Luigi Coppola & Denny Coffetti & Elena Crotti, 2018. "Plain and Ultrafine Fly Ashes Mortars for Environmentally Friendly Construction Materials," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    3. Viviana Letelier & José Marcos Ortega & Ester Tarela & Pedro Muñoz & Bastián I. Henríquez-Jara & Giacomo Moriconi, 2018. "Mechanical Performance of Eco-Friendly Concretes with Volcanic Powder and Recycled Concrete Aggregates," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
    4. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Al-Mansour & Cheuk Lun Chow & Luciano Feo & Rosa Penna & Denvid Lau, 2019. "Green Concrete: By-Products Utilization and Advanced Approaches," Sustainability, MDPI, vol. 11(19), pages 1-30, September.
    2. Tiana Milović & Slobodan Šupić & Mirjana Malešev & Vlastimir Radonjanin, 2022. "The Effects of Natural Zeolite as Fly Ash Alternative on Frost Resistance and Shrinkage of Blended Cement Mortars," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    3. Antonio José Tenza-Abril & Patricia Compañ-Rosique & Rosana Satorre-Cuerda & Afonso Miguel Solak & Daniel Gavotti Freschi, 2021. "Smartphone Application for Determining the Segregation Index of Lightweight Aggregate Concrete," Sustainability, MDPI, vol. 13(22), pages 1-12, November.
    4. Slobodan Šupić & Vesna Bulatović & Mirjana Malešev & Vlastimir Radonjanin & Ivan Lukić, 2021. "Sustainable Masonry Mortars with Fly Ash, Blast Furnace Granulated Slag and Wheat Straw Ash," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    5. Hossein Javadi & Seyed Soheil Mousavi Ajarostaghi & Marc A. Rosen & Mohsen Pourfallah, 2018. "A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    6. Ahmed M. Ebid & Ahmed Farouk Deifalla & Hisham A. Mahdi, 2022. "Evaluating Shear Strength of Light-Weight and Normal-Weight Concretes through Artificial Intelligence," Sustainability, MDPI, vol. 14(21), pages 1-49, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Javadi & Seyed Soheil Mousavi Ajarostaghi & Marc A. Rosen & Mohsen Pourfallah, 2018. "A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    2. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    3. Hye Gi Kim & Sun Sook Kim, 2020. "Occupants’ Awareness of and Satisfaction with Green Building Technologies in a Certified Office Building," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    4. Kim, Min-Hwi & Kim, Deukwon & Heo, Jaehyeok & Lee, Dong-Won, 2020. "Energy performance investigation of net plus energy town: Energy balance of the Jincheon Eco-Friendly energy town," Renewable Energy, Elsevier, vol. 147(P1), pages 1784-1800.
    5. Lee, Junghun & Yoo, Seunghwan & Kim, Jonghun & Song, Doosam & Jeong, Hakgeun, 2018. "Improvements to the customer baseline load (CBL) using standard energy consumption considering energy efficiency and demand response," Energy, Elsevier, vol. 144(C), pages 1052-1063.
    6. Lee, Junsoo & Kim, Tae Wan & Koo, Choongwan, 2022. "A novel process model for developing a scalable room-level energy benchmark using real-time bigdata: Focused on identifying representative energy usage patterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Min-Suk Jo & Jang-Hoon Shin & Won-Jun Kim & Jae-Weon Jeong, 2017. "Energy-Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms," Energies, MDPI, vol. 10(11), pages 1-23, November.
    8. Marcos Vinicius Bueno de Morais & Viviana Vanesa Urbina Guerrero & Edmilson Dias de Freitas & Edson R. Marciotto & Hugo Valdés & Christian Correa & Roberto Agredano & Ismael Vera-Puerto, 2019. "Sensitivity of Radiative and Thermal Properties of Building Material in the Urban Atmosphere," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    9. Yeweon Kim & Ki-Hyung Yu, 2018. "Study on Policy Marking of Passive Level Insulation Standards for Non-Residential Buildings in South Korea," Sustainability, MDPI, vol. 10(7), pages 1-16, July.
    10. Hye Gi Kim & Hyun Jun Kim & Chae Hwan Jeon & Myeong Won Chae & Young Hum Cho & Sun Sook Kim, 2020. "Analysis of Energy Saving Effect and Cost Efficiency of ECMs to Upgrade the Building Energy Code," Energies, MDPI, vol. 13(18), pages 1-22, September.
    11. Tereza Pavlů & Vladimír Kočí & Petr Hájek, 2019. "Environmental Assessment of Two Use Cycles of Recycled Aggregate Concrete," Sustainability, MDPI, vol. 11(21), pages 1-22, November.
    12. Eunyoung Kim & Eunkyoung Hwang, 2017. "Analysis of the Current Scoring Distribution by Evaluation Criteria in Korean Long-Life Housing Certification System Cases," Sustainability, MDPI, vol. 9(10), pages 1-20, October.
    13. Ki Uhn Ahn & Han Sol Shin & Cheol Soo Park, 2019. "Energy Analysis of 4625 Office Buildings in South Korea," Energies, MDPI, vol. 12(6), pages 1-16, March.
    14. Flora Faleschini & Klajdi Toska & Mariano Angelo Zanini & Filippo Andreose & Alessio Giorgio Settimi & Katya Brunelli & Carlo Pellegrino, 2021. "Assessment of a Municipal Solid Waste Incinerator Bottom Ash as a Candidate Pozzolanic Material: Comparison of Test Methods," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    15. Wenqiang Xing & Zhihe Cheng & Xianzhang Ling & Liang Tang & Shengyi Cong & Shaowei Wei & Lin Geng, 2022. "Bearing Properties and Stability Analysis of the Slope Protection Framework Using Recycled Railway Sleepers," Sustainability, MDPI, vol. 14(8), pages 1-11, April.
    16. Chao-Wei Tang, 2018. "Properties of Fired Bricks Incorporating TFT-LCD Waste Glass Powder with Reservoir Sediments," Sustainability, MDPI, vol. 10(7), pages 1-18, July.
    17. Shi Ying Kwek & Hanizam Awang, 2021. "Utilisation of Recycled Silt from Water Treatment and Palm Oil Fuel Ash as Geopolymer Artificial Lightweight Aggregate," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    18. Edmundas Monstvilas & Simon Paul Borg & Rosita Norvaišienė & Karolis Banionis & Juozas Ramanauskas, 2023. "Impact of the EPBD on Changes in the Energy Performance of Multi-Apartment Buildings in Lithuania," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    19. Kyung Hwa Cho & Sun Sook Kim, 2019. "Energy Performance Assessment According to Data Acquisition Levels of Existing Buildings," Energies, MDPI, vol. 12(6), pages 1-17, March.
    20. Ahmad Taghdisi & Yousof Ghanbari & Mohammad Eskandari, 2020. "Energy-Conservation Considerations Through a Novel Integration of Sunspace and Solar Chimney in The Terraced Rural Dwellings," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:11:p:4304-:d:184201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.