IDEAS home Printed from https://ideas.repec.org/a/eco/journ2/2020-03-1.html
   My bibliography  Save this article

Energy-Conservation Considerations Through a Novel Integration of Sunspace and Solar Chimney in The Terraced Rural Dwellings

Author

Listed:
  • Ahmad Taghdisi

    (Department of Geography and Rural Planning, Faculty of Geographical Sciences and Planning, University of Isfahan, 8174673441 Isfahan, Iran,)

  • Yousof Ghanbari

    (Department of Geography and Rural Planning, Faculty of Geographical Sciences and Planning, University of Isfahan, 8174673441 Isfahan, Iran,)

  • Mohammad Eskandari

    (Department of Geography and Rural Planning, Faculty of Geographical Sciences and Planning, University of Isfahan, 8174673441 Isfahan, Iran,)

Abstract

In the present study, a novel passive solar system a designed sunspace in combination with solar chimney (SS) is implied to work out the concerns of energy requirement in the terraced rural dwellings of Iran. Renewable plans for heating need to be implemented before regarding mechanical facilities. Due to the southern orientation of most rural homes moreover, dwelling slope it is likely to use sunlight in most hours of the day. Hence, the SS system with an area of 4 m2 on the southern side of the building is considered. The simulation was performed through the Energyplus software and verified by experimental data. On the basis of the results, applying the SS system in buildings can magnify the amount of heat obtained. This is a practical plan to assist in space heating in cold months. Moreover, natural night ventilation over the SS can reduce the cooling load during hot seasons. The results additionally indicate that the highest energy-saving for heating and cooling observed in January and July respectively. Lastly, the annual economic advantage of the SS system with respect to power conservation will be 14.3% accordingly the increased cost for installing the SS will be retrieved by 8 years generally.

Suggested Citation

  • Ahmad Taghdisi & Yousof Ghanbari & Mohammad Eskandari, 2020. "Energy-Conservation Considerations Through a Novel Integration of Sunspace and Solar Chimney in The Terraced Rural Dwellings," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 1-13.
  • Handle: RePEc:eco:journ2:2020-03-1
    as

    Download full text from publisher

    File URL: https://www.econjournals.com/index.php/ijeep/article/download/8683/4980
    Download Restriction: no

    File URL: https://www.econjournals.com/index.php/ijeep/article/view/8683/4980
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oliveti, Giuseppe & Arcuri, Natale & De Simone, Marilena & Bruno, Roberto, 2012. "Solar heat gains and operative temperature in attached sunspaces," Renewable Energy, Elsevier, vol. 39(1), pages 241-249.
    2. Zhang, Xingxing & Lovati, Marco & Vigna, Ilaria & Widén, Joakim & Han, Mengjie & Gal, Csilla & Feng, Tao, 2018. "A review of urban energy systems at building cluster level incorporating renewable-energy-source (RES) envelope solutions," Applied Energy, Elsevier, vol. 230(C), pages 1034-1056.
    3. AboulNaga, M.M & Abdrabboh, S.N, 2000. "Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall–roof solar chimney," Renewable Energy, Elsevier, vol. 19(1), pages 47-54.
    4. Afsharzade, Nashmil & Papzan, Abdolhamid & Ashjaee, Mehdi & Delangizan, Sohrab & Van Passel, Steven & Azadi, Hossein, 2016. "Renewable energy development in rural areas of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 743-755.
    5. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2006. "The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate," Renewable Energy, Elsevier, vol. 31(7), pages 987-1010.
    6. Saadatian, Omidreza & Sopian, K. & Lim, C.H. & Asim, Nilofar & Sulaiman, M.Y., 2012. "Trombe walls: A review of opportunities and challenges in research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6340-6351.
    7. Alex Yong Kwang Tan & Nyuk Hien Wong, 2013. "Parameterization Studies of Solar Chimneys in the Tropics," Energies, MDPI, vol. 6(1), pages 1-19, January.
    8. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    9. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    10. Li, Haorong & Yu, Yuebin & Niu, Fuxin & Shafik, Michel & Chen, Bing, 2014. "Performance of a coupled cooling system with earth-to-air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 62(C), pages 468-477.
    11. Gao, Hao & Koch, Christian & Wu, Yupeng, 2019. "Building information modelling based building energy modelling: A review," Applied Energy, Elsevier, vol. 238(C), pages 320-343.
    12. Maerefat, M. & Haghighi, A.P., 2010. "Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 35(10), pages 2316-2324.
    13. Moradi, H. & Eskandari, H., 2012. "An experimental and numerical investigation of Shovadan heating and cooling operation," Renewable Energy, Elsevier, vol. 48(C), pages 364-368.
    14. Chenari, Behrang & Dias Carrilho, João & Gameiro da Silva, Manuel, 2016. "Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1426-1447.
    15. Mihalakakou, G, 2002. "On the use of sunspace for space heating/cooling in Europe," Renewable Energy, Elsevier, vol. 26(3), pages 415-429.
    16. Yu, Yuebin & Li, Haorong & Niu, Fuxin & Yu, Daihong, 2014. "Investigation of a coupled geothermal cooling system with earth tube and solar chimney," Applied Energy, Elsevier, vol. 114(C), pages 209-217.
    17. Rempel, Alexandra R. & Rempel, Alan W. & Gates, Kenneth R. & Shaw, Barbara, 2016. "Climate-responsive thermal mass design for Pacific Northwest sunspaces," Renewable Energy, Elsevier, vol. 85(C), pages 981-993.
    18. Lee, Duen-Sheng & Hung, Tzu-Chen & Lin, Jaw-Ren & Zhao, Jun, 2015. "Experimental investigations on solar chimney for optimal heat collection to be utilized in organic Rankine cycle," Applied Energy, Elsevier, vol. 154(C), pages 651-662.
    19. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    20. Khedari, Joseph & Rachapradit, Ninnart & Hirunlabh, Jongjit, 2003. "Field study of performance of solar chimney with air-conditioned building," Energy, Elsevier, vol. 28(11), pages 1099-1114.
    21. Fossati, Michele & Scalco, Veridiana Atanasio & Linczuk, Vinícius Cesar Cadena & Lamberts, Roberto, 2016. "Building energy efficiency: An overview of the Brazilian residential labeling scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1216-1231.
    22. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    23. Loutzenhiser, Peter G. & Maxwell, Gregory M. & Manz, Heinrich, 2007. "An empirical validation of the daylighting algorithms and associated interactions in building energy simulation programs using various shading devices and windows," Energy, Elsevier, vol. 32(10), pages 1855-1870.
    24. DeBlois, Justin & Bilec, Melissa & Schaefer, Laura, 2013. "Simulating home cooling load reductions for a novel opaque roof solar chimney configuration," Applied Energy, Elsevier, vol. 112(C), pages 142-151.
    25. Zhai, X.Q. & Song, Z.P. & Wang, R.Z., 2011. "A review for the applications of solar chimneys in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3757-3767.
    26. Quesada, Guillermo & Rousse, Daniel & Dutil, Yvan & Badache, Messaoud & Hallé, Stéphane, 2012. "A comprehensive review of solar facades. Opaque solar facades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2820-2832.
    27. Imran, Ahmed Abdulnabi & Jalil, Jalal M. & Ahmed, Sabah T., 2015. "Induced flow for ventilation and cooling by a solar chimney," Renewable Energy, Elsevier, vol. 78(C), pages 236-244.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    3. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    4. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    5. Li, Yongcai & Long, Tianhe & Bai, Xi & Wang, Linfeng & Li, Wuyan & Liu, Shuli & Lu, Jun & Cheng, Yong & Ye, Kai & Huang, Sheng, 2021. "An experimental investigation on the passive ventilation and cooling performance of an integrated solar chimney and earth–air heat exchanger," Renewable Energy, Elsevier, vol. 175(C), pages 486-500.
    6. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    7. Shi, Long, 2019. "Impacts of wind on solar chimney performance in a building," Energy, Elsevier, vol. 185(C), pages 55-67.
    8. Stevanović, Sanja, 2013. "Optimization of passive solar design strategies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 177-196.
    9. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    10. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    11. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    12. Elghamry, Rania & Hassan, Hamdy, 2020. "Impact a combination of geothermal and solar energy systems on building ventilation, heating and output power: Experimental study," Renewable Energy, Elsevier, vol. 152(C), pages 1403-1413.
    13. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    14. Akhtari, Mohammad Reza & Shayegh, Iman & Karimi, Nader, 2020. "Techno-economic assessment and optimization of a hybrid renewable earth - air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations," Renewable Energy, Elsevier, vol. 148(C), pages 839-851.
    15. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    16. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    17. Saadatian, Omidreza & Sopian, K. & Lim, C.H. & Asim, Nilofar & Sulaiman, M.Y., 2012. "Trombe walls: A review of opportunities and challenges in research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6340-6351.
    18. Sengupta, Ayan & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2022. "Computational performance analysis of a solar chimney using surface modifications of the absorber plate," Renewable Energy, Elsevier, vol. 185(C), pages 1095-1109.
    19. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Qingsong Ma & Hiroatsu Fukuda & Myonghyang Lee & Takumi Kobatake & Yuko Kuma & Akihito Ozaki & Xindong Wei, 2018. "Experimental Analysis of the Thermal Performance of a Sunspace Attached to a House with a Central Air Conditioning System," Sustainability, MDPI, vol. 10(5), pages 1-17, May.

    More about this item

    Keywords

    Building Energy Conservation; Energyplus; Solar Chimney; Sunspace; Terraced Rural Area;
    All these keywords.

    JEL classification:

    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ2:2020-03-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.