IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i3p874-d137024.html
   My bibliography  Save this article

Plain and Ultrafine Fly Ashes Mortars for Environmentally Friendly Construction Materials

Author

Listed:
  • Luigi Coppola

    (Department of Engineering and Applied Sciences, University of Bergamo, 24129 Bergamo, Italy
    Consorzio INSTM, UdR “Materials and Corrosion”, 50121 Florence, Italy)

  • Denny Coffetti

    (Department of Engineering and Applied Sciences, University of Bergamo, 24129 Bergamo, Italy
    Consorzio INSTM, UdR “Materials and Corrosion”, 50121 Florence, Italy)

  • Elena Crotti

    (Department of Engineering and Applied Sciences, University of Bergamo, 24129 Bergamo, Italy
    Consorzio INSTM, UdR “Materials and Corrosion”, 50121 Florence, Italy)

Abstract

This paper is aimed to study the rheological and physical performance of mortars manufactured replacing Portland-based cements with low calcium siliceous fly ash (FA) or ultrafine fly ash (UFFA). Five different types of cement (CEM I, CEM II/A-LL, CEM III/A, CEM III/B, and CEM IV according to EN 197-1) were used. Mortars were manufactured with FA or UFFA replacing 5%, 15%, 25%, 35%, and 50% of cement mass. Results indicate that compressive strength of mortars with UFFA is considerably higher than that of mixtures containing traditional FA, both at early and long ages. Moreover, experimental data reveal that replacement of cement with up to 25% of UFFA determines higher compressive strength at 7, 28, and 84 days than plain mortars (containing cement only), regardless of the type of cement used. Mortars manufactured with 35% or 50% of UFFA show slightly lower or similar compressive strength compared to the reference mortar (containing cement only). In addition, the results show values of the strength activity index of mortars made with FA 25%, 23%, and 20% lower than the reference corresponding mortars (cement only) at 7, 28, and 84 days, respectively. The grinding of FA, despite resulting in an increase in production energy and CO 2 emissions compared to unmilled FA, allows a wide use of these SCM (Supplementary Cementitious Materials) in place of cement, reducing the environmental impact of mortars up to 40% at the 28-day strength class. The use of UFFA ensures better resistance in CaCl 2 -rich environments.

Suggested Citation

  • Luigi Coppola & Denny Coffetti & Elena Crotti, 2018. "Plain and Ultrafine Fly Ashes Mortars for Environmentally Friendly Construction Materials," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:874-:d:137024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/3/874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/3/874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Atmaca, Adem & Kanoglu, Mehmet, 2012. "Reducing energy consumption of a raw mill in cement industry," Energy, Elsevier, vol. 42(1), pages 261-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afonso Miguel Solak & Antonio José Tenza-Abril & José Miguel Saval & Victoria Eugenia García-Vera, 2018. "Effects of Multiple Supplementary Cementitious Materials on Workability and Segregation Resistance of Lightweight Aggregate Concrete," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    2. Hossein Javadi & Seyed Soheil Mousavi Ajarostaghi & Marc A. Rosen & Mohsen Pourfallah, 2018. "A Comprehensive Review of Backfill Materials and Their Effects on Ground Heat Exchanger Performance," Sustainability, MDPI, vol. 10(12), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikulčić, Hrvoje & Vujanović, Milan & Ashhab, Moh'd Sami & Duić, Neven, 2014. "Large eddy simulation of a two-phase reacting swirl flow inside a cement cyclone," Energy, Elsevier, vol. 75(C), pages 89-96.
    2. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Yin, Qian & Du, Wen-Jing & Ji, Xing-Lin & Cheng, Lin, 2016. "Optimization design and economic analyses of heat recovery exchangers on rotary kilns," Applied Energy, Elsevier, vol. 180(C), pages 743-756.
    4. Ruonan Meng & Qinglin Zhao & Miaomiao Wu & Quanming Long & Mingkai Zhou, 2021. "A Survey and Analysis on Electricity Consumption of Raw Material Mill System in China Cement Industry between 2014 and 2019," Sustainability, MDPI, vol. 13(3), pages 1-11, January.
    5. Yin, Qian & Du, Wen-Jing & Cheng, Lin, 2017. "Optimization design of heat recovery systems on rotary kilns using genetic algorithms," Applied Energy, Elsevier, vol. 202(C), pages 153-168.
    6. Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
    7. Fellaou, S. & Bounahmidi, T., 2018. "Analyzing thermodynamic improvement potential of a selected cement manufacturing process: Advanced exergy analysis," Energy, Elsevier, vol. 154(C), pages 190-200.
    8. Lin, Hsin-Chiu & Chan, David Yih-Liang & Lin, Wei-Chun & Hsu, Chung-Hsuan & Hong, Gui-Bing, 2014. "Status of energy conservation in Taiwan's pulp and paper industry," Energy, Elsevier, vol. 73(C), pages 680-685.
    9. Huang, Lizhen & Krigsvoll, Guri & Johansen, Fred & Liu, Yongping & Zhang, Xiaoling, 2018. "Carbon emission of global construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1906-1916.
    10. Francesco Pelella & Luca Viscito & Federico Magnea & Alessandro Zanella & Stanislao Patalano & Alfonso William Mauro & Nicola Bianco, 2023. "Comparison between Physics-Based Approaches and Neural Networks for the Energy Consumption Optimization of an Automotive Production Industrial Process," Energies, MDPI, vol. 16(19), pages 1-22, September.
    11. Yang, Dong & Fan, Lin & Shi, Feng & Liu, Qian & Wang, Yajing, 2017. "Comparative study of cement manufacturing with different strength grades using the coupled LCA and partial LCC methods—A case study in China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 60-68.
    12. Karellas, S. & Leontaritis, A.-D. & Panousis, G. & Bellos, E. & Kakaras, E., 2013. "Energetic and exergetic analysis of waste heat recovery systems in the cement industry," Energy, Elsevier, vol. 58(C), pages 147-156.
    13. Jafaryani Jokandan, Majid & Aghbashlo, Mortaza & Mohtasebi, Seyed Saeid, 2015. "Comprehensive exergy analysis of an industrial-scale yogurt production plant," Energy, Elsevier, vol. 93(P2), pages 1832-1851.
    14. Sucic, Boris & Al-Mansour, Fouad & Pusnik, Matevz & Vuk, Tomaz, 2016. "Context sensitive production planning and energy management approach in energy intensive industries," Energy, Elsevier, vol. 108(C), pages 63-73.
    15. Mirzakhani, M. Amin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Energy benchmarking of cement industry, based on Process Integration concepts," Energy, Elsevier, vol. 130(C), pages 382-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:3:p:874-:d:137024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.