IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2032-d1042943.html
   My bibliography  Save this article

Impact of the EPBD on Changes in the Energy Performance of Multi-Apartment Buildings in Lithuania

Author

Listed:
  • Edmundas Monstvilas

    (Institute of Architecture and Construction, Kaunas University of Technology, 44405 Kaunas, Lithuania)

  • Simon Paul Borg

    (Department of Environmental Design, Faculty for the Built Environment, University of Malta, MSD 2080 Msida, Malta)

  • Rosita Norvaišienė

    (Institute of Architecture and Construction, Kaunas University of Technology, 44405 Kaunas, Lithuania)

  • Karolis Banionis

    (Institute of Architecture and Construction, Kaunas University of Technology, 44405 Kaunas, Lithuania)

  • Juozas Ramanauskas

    (Institute of Architecture and Construction, Kaunas University of Technology, 44405 Kaunas, Lithuania)

Abstract

As per general provisions of European Directive 2010/31/EU on the energy efficiency of buildings (recast), the Lithuanian government transposed the Directive into Lithuanian national law. In the process, the Lithuanian government prepared strategic documents in the field of energy performance and renewable energy that were integrated together through the National Energy and Climate Plan for 2021–2030 (NECP). To better understand the current situation vis-à-vis energy performance, the main characteristics of buildings pertaining to the Lithuanian multi-apartment building stock, classified according to their energy performance class, are analysed and discussed in this paper. Through the exploitation of data from the national Energy Performance Certificate (EPC) register, an overview of the energy performance of the existing Lithuanian residential building stock is presented along with an analysis of the unused potential energy savings pertinent to this building category. The results obtained from the analysed data of energy consumption in buildings shows that the policies adopted over the years were successful in improving the building stock, promoting the move towards the specifications required by a Class A++ (nearly zero energy buildings—NZEB) by 2021. The results show that this was primarily achieved by a significant reduction in the thermal energy used for space heating.

Suggested Citation

  • Edmundas Monstvilas & Simon Paul Borg & Rosita Norvaišienė & Karolis Banionis & Juozas Ramanauskas, 2023. "Impact of the EPBD on Changes in the Energy Performance of Multi-Apartment Buildings in Lithuania," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2032-:d:1042943
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Collins, Matthew & Curtis, John, 2018. "Bunching of residential building energy performance certificates at threshold values," Applied Energy, Elsevier, vol. 211(C), pages 662-676.
    2. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & López-González, Luis M. & Olasolo-Alonso, Pablo, 2018. "Environmental and energy impact of the EPBD in residential buildings in hot and temperate Mediterranean zones: The case of Spain," Energy, Elsevier, vol. 161(C), pages 618-634.
    3. Aleksandar S. Anđelković & Miroslav Kljajić & Dušan Macura & Vladimir Munćan & Igor Mujan & Mladen Tomić & Željko Vlaović & Borivoj Stepanov, 2021. "Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings?," Energies, MDPI, vol. 14(12), pages 1-19, June.
    4. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    5. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Yanzhe Yu & Shijun You & Shen Wei & Huan Zhang & Tianzhen Ye & Yaran Wang & Yanling Na, 2022. "Exploring the Applicability of Building Energy Performance Certification Systems in Underground Stations in China," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    7. Amecke, Hermann, 2012. "The impact of energy performance certificates: A survey of German home owners," Energy Policy, Elsevier, vol. 46(C), pages 4-14.
    8. Duk Joon Park & Ki Hyung Yu & Yong Sang Yoon & Kee Han Kim & Sun Sook Kim, 2015. "Analysis of a Building Energy Efficiency Certification System in Korea," Sustainability, MDPI, vol. 7(12), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagliaro, Francesca & Hugony, Francesca & Zanghirella, Fabio & Basili, Rossano & Misceo, Monica & Colasuonno, Luca & Del Fatto, Vincenzo, 2021. "Assessing building energy performance and energy policy impact through the combined analysis of EPC data – The Italian case study of SIAPE," Energy Policy, Elsevier, vol. 159(C).
    2. Wiethe, Christian & Wenninger, Simon, 2023. "The influence of building energy performance prediction accuracy on retrofit rates," Energy Policy, Elsevier, vol. 177(C).
    3. Simon Wenninger & Christian Wiethe, 2021. "Benchmarking Energy Quantification Methods to Predict Heating Energy Performance of Residential Buildings in Germany," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(3), pages 223-242, June.
    4. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Hettinga, Sanne & van ’t Veer, Rein & Boter, Jaap, 2023. "Large scale energy labelling with models: The EU TABULA model versus machine learning with open data," Energy, Elsevier, vol. 264(C).
    6. Antonio Attanasio & Marco Savino Piscitelli & Silvia Chiusano & Alfonso Capozzoli & Tania Cerquitelli, 2019. "Towards an Automated, Fast and Interpretable Estimation Model of Heating Energy Demand: A Data-Driven Approach Exploiting Building Energy Certificates," Energies, MDPI, vol. 12(7), pages 1-25, April.
    7. Hardy, A. & Glew, D., 2019. "An analysis of errors in the Energy Performance certificate database," Energy Policy, Elsevier, vol. 129(C), pages 1168-1178.
    8. Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).
    9. Yuehong Lu & Zafar A. Khan & Manuel S. Alvarez-Alvarado & Yang Zhang & Zhijia Huang & Muhammad Imran, 2020. "A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources," Sustainability, MDPI, vol. 12(12), pages 1-31, June.
    10. Cichowicz, Robert & Jerominko, Tomasz, 2023. "Comparison of calculation and consumption methods for determining Energy Performance Certificates (EPC) in the case of multi-family residential buildings in Poland (Central-Eastern Europe)," Energy, Elsevier, vol. 282(C).
    11. Domenico Palladino & Silvia Di Turi, 2023. "Energy and Economic Savings Assessment of Energy Refurbishment Actions in Italian Residential Buildings: Comparison between Asset and Tailored Calculation," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    12. Aleksandar S. Anđelković & Miroslav Kljajić & Dušan Macura & Vladimir Munćan & Igor Mujan & Mladen Tomić & Željko Vlaović & Borivoj Stepanov, 2021. "Building Energy Performance Certificate—A Relevant Indicator of Actual Energy Consumption and Savings?," Energies, MDPI, vol. 14(12), pages 1-19, June.
    13. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Hoare, Cathal & Purcell, Karl & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach to optimize urban scale energy retrofit decisions for residential buildings," Applied Energy, Elsevier, vol. 267(C).
    14. Didem Gunes Yilmaz & Fatma Cesur, 2023. "A Study for the Improvement of the Energy Performance Certificate (EPC) System in Turkey," Sustainability, MDPI, vol. 15(19), pages 1-24, September.
    15. Fabbri, Kristian & Marinosci, Cosimo, 2018. "EPBD independent control system for energy performance certification: The Emilia-Romagna Region (Italy) pioneering experience," Energy, Elsevier, vol. 165(PB), pages 563-576.
    16. Zuhaib, Sheikh & Schmatzberger, Senta & Volt, Jonathan & Toth, Zsolt & Kranzl, Lukas & Eugenio Noronha Maia, Iná & Verheyen, Jan & Borragán, Guillermo & Monteiro, Cláudia Sousa & Mateus, Nuno & Fragos, 2022. "Next-generation energy performance certificates: End-user needs and expectations," Energy Policy, Elsevier, vol. 161(C).
    17. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    18. Feser, Daniel & Runst, Petrik, 2015. "Energy efficiency consultants as change agents? Examining the reasons for EECs’ limited success," ifh Working Papers 1 (2015), Volkswirtschaftliches Institut für Mittelstand und Handwerk an der Universität Göttingen (ifh).
    19. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    20. Hye Gi Kim & Sun Sook Kim, 2020. "Occupants’ Awareness of and Satisfaction with Green Building Technologies in a Certified Office Building," Sustainability, MDPI, vol. 12(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2032-:d:1042943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.