IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3619-d174701.html
   My bibliography  Save this article

A Two-Door Airplane Boarding Approach When Using Apron Buses

Author

Listed:
  • Camelia Delcea

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010522 Bucharest, Romania)

  • Liviu-Adrian Cotfas

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010522 Bucharest, Romania)

  • Nora Chiriță

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010522 Bucharest, Romania)

  • Ionuț Nica

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, 010522 Bucharest, Romania)

Abstract

Boarding is one of the major processes of airplane turnaround time, with a direct influence on the airline companies’ costs. From a sustainable point of view, a faster completion of the boarding process has impact not only on the airline company’s long-term performance, but also on customers’ satisfaction and on the airport’s possibility of offering more services without additional investments in new infrastructure. Considering the airplane boarding strategies literature, it can be observed that the latest papers are dealing with developing faster boarding strategies, most of them considering boarding using just one-door of the aircraft. Even though boarding on one-door might be feasible for the airports having the needed infrastructure and sufficient jet-bridges, the situation is different in European airports, as the use of apron buses is fairly common. Moreover, some of the airline companies have adapted their boarding pass in order to reflect which door one should board once they get down from the bus. While using these buses, the boarding strategies developed in the literature are hard to find their applicability. Thus, a new method for boarding on two-door airplanes when apron buses are used is proposed and tested against the actual boarding method. A model is created in NetLogo 6.0.4, taking advantages of the agent-based modeling and used for simulations. The results show a boarding time reduction of 8.91%.

Suggested Citation

  • Camelia Delcea & Liviu-Adrian Cotfas & Nora Chiriță & Ionuț Nica, 2018. "A Two-Door Airplane Boarding Approach When Using Apron Buses," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3619-:d:174701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Notomista, Gennaro & Selvaggio, Mario & Sbrizzi, Fiorentina & Di Maio, Gabriella & Grazioso, Stanislao & Botsch, Michael, 2016. "A fast airplane boarding strategy using online seat assignment based on passenger classification," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 140-149.
    2. Eitan Bachmat & Daniel Berend & Luba Sapir & Steven Skiena & Natan Stolyarov, 2009. "Analysis of Airplane Boarding Times," Operations Research, INFORMS, vol. 57(2), pages 499-513, April.
    3. Mo Gao & Leishan Zhou & Yongjun Chen, 2016. "An Alternative Approach for High Speed Railway Carrying Capacity Calculation Based on Multiagent Simulation," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-10, November.
    4. Menkes H. L. van den Briel & J. René Villalobos & Gary L. Hogg & Tim Lindemann & Anthony V. Mulé, 2005. "America West Airlines Develops Efficient Boarding Strategies," Interfaces, INFORMS, vol. 35(3), pages 191-201, June.
    5. Van Landeghem, H. & Beuselinck, A., 2002. "Reducing passenger boarding time in airplanes: A simulation based approach," European Journal of Operational Research, Elsevier, vol. 142(2), pages 294-308, October.
    6. Dossetti, V. & Bouzat, S. & Kuperman, M.N., 2017. "Behavioral effects in room evacuation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 193-202.
    7. Nyquist, David C. & McFadden, Kathleen L., 2008. "A study of the airline boarding problem," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 197-204.
    8. Milne, R. John & Salari, Mostafa, 2016. "Optimization of assigning passengers to seats on airplanes based on their carry-on luggage," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 104-110.
    9. Steffen, Jason H. & Hotchkiss, Jon, 2012. "Experimental test of airplane boarding methods," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 64-67.
    10. Milne, R. John & Kelly, Alexander R., 2014. "A new method for boarding passengers onto an airplane," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 93-100.
    11. Steffen, Jason H., 2008. "Optimal boarding method for airline passengers," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 146-150.
    12. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    13. Qiang, Sheng-Jie & Jia, Bin & Xie, Dong-Fan & Gao, Zi-You, 2014. "Reducing airplane boarding time by accounting for passengers' individual properties: A simulation based on cellular automaton," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 42-47.
    14. Bazargan, Massoud, 2007. "A linear programming approach for aircraft boarding strategy," European Journal of Operational Research, Elsevier, vol. 183(1), pages 394-411, November.
    15. Ren, Xinhui & Xu, Xiaobing, 2018. "Experimental analyses of airplane boarding based on interference classification," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 55-63.
    16. Tang, Tie-Qiao & Yang, Shao-Peng & Ou, Hui & Chen, Liang & Huang, Hai-Jun, 2018. "An aircraft boarding model accounting for group behavior," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 182-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hélio Moreira & Luís P. Ferreira & Nuno O. Fernandes & Francisco J. G. Silva & Ana L. Ramos & Paulo Ávila, 2023. "A Simulation Study of Aircraft Boarding Strategies," Mathematics, MDPI, vol. 11(20), pages 1-13, October.
    2. Camelia Delcea & Liviu-Adrian Cotfas & Liliana Crăciun & Anca Gabriela Molanescu, 2018. "Are Seat and Aisle Interferences Affecting the Overall Airplane Boarding Time? An Agent-Based Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    3. Camelia Delcea & Liviu-Adrian Cotfas & Mostafa Salari & R. John Milne, 2018. "Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
    4. Milne, R. John & Delcea, Camelia & Cotfas, Liviu-Adrian & Salari, Mostafa, 2019. "New methods for two-door airplane boarding using apron buses," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    5. Kisiel, Tomasz, 2020. "Resilience of passenger boarding strategies to priority fares offered by airlines," Journal of Air Transport Management, Elsevier, vol. 87(C).
    6. Salari, Mostafa & Milne, R. John & Delcea, Camelia & Kattan, Lina & Cotfas, Liviu-Adrian, 2020. "Social distancing in airplane seat assignments," Journal of Air Transport Management, Elsevier, vol. 89(C).
    7. Schultz, Michael & Soolaki, Majid & Salari, Mostafa & Bakhshian, Elnaz, 2023. "A combined optimization–simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities," Journal of Air Transport Management, Elsevier, vol. 106(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camelia Delcea & Liviu-Adrian Cotfas & Liliana Crăciun & Anca Gabriela Molanescu, 2018. "Are Seat and Aisle Interferences Affecting the Overall Airplane Boarding Time? An Agent-Based Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    2. Salari, Mostafa & Milne, R. John & Delcea, Camelia & Kattan, Lina & Cotfas, Liviu-Adrian, 2020. "Social distancing in airplane seat assignments," Journal of Air Transport Management, Elsevier, vol. 89(C).
    3. Camelia Delcea & Liviu-Adrian Cotfas & Mostafa Salari & R. John Milne, 2018. "Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
    4. Milne, R. John & Delcea, Camelia & Cotfas, Liviu-Adrian & Salari, Mostafa, 2019. "New methods for two-door airplane boarding using apron buses," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    5. Fabrin, Bruna H.P. & Ferrari, Denise B. & Arraut, Eduardo M. & Neumann, Simone, 2024. "Towards balancing efficiency and customer satisfaction in airplane boarding: An agent-based approach," Operations Research Perspectives, Elsevier, vol. 12(C).
    6. Ren, Xinhui & Zhou, Xiyu & Xu, Xiaobing, 2020. "A new model of luggage storage time while boarding an airplane: An experimental test," Journal of Air Transport Management, Elsevier, vol. 84(C).
    7. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    8. Michael Schultz & Michael Schmidt, 2018. "Advancements in Passenger Processes at Airports from Aircraft Perspective," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    9. Ren, Xinhui & Xu, Xiaobing, 2018. "Experimental analyses of airplane boarding based on interference classification," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 55-63.
    10. Michael Schultz & Jörg Fuchte, 2020. "Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    11. Tang, Tie-Qiao & Yang, Shao-Peng & Ou, Hui & Chen, Liang & Huang, Hai-Jun, 2018. "An aircraft boarding model accounting for group behavior," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 182-189.
    12. Zeineddine, Hassan, 2021. "Reducing the effect of passengers’ non-compliance with aircraft boarding rules," Journal of Air Transport Management, Elsevier, vol. 92(C).
    13. Wittmann, Jürgen, 2019. "Customer-oriented optimization of the airplane boarding process," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 31-39.
    14. Schultz, Michael & Soolaki, Majid & Salari, Mostafa & Bakhshian, Elnaz, 2023. "A combined optimization–simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities," Journal of Air Transport Management, Elsevier, vol. 106(C).
    15. Zeineddine, Hassan, 2017. "A dynamically optimized aircraft boarding strategy," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 144-151.
    16. Schultz, Michael & Evler, Jan & Asadi, Ehsan & Preis, Henning & Fricke, Hartmut & Wu, Cheng-Lung, 2020. "Future aircraft turnaround operations considering post-pandemic requirements," Journal of Air Transport Management, Elsevier, vol. 89(C).
    17. Qiang, Sheng-Jie & Jia, Bin & Jiang, Rui & Huang, Qing-Xia & Radwan, Essam & Gao, Zi-You & Wang, Yu-Qing, 2016. "Symmetrical design of strategy-pairs for enplaning and deplaning an airplane," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 52-60.
    18. Hutter, Leonie & Jaehn, Florian & Neumann, Simone, 2019. "Influencing factors on airplane boarding times," Omega, Elsevier, vol. 87(C), pages 177-190.
    19. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    20. Mostafa Salari & R. John Milne & Lina Kattan, 2019. "Airplane boarding optimization considering reserved seats and passengers’ carry-on bags," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 806-823, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3619-:d:174701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.