IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v89y2020ics0969699720304981.html
   My bibliography  Save this article

Social distancing in airplane seat assignments

Author

Listed:
  • Salari, Mostafa
  • Milne, R. John
  • Delcea, Camelia
  • Kattan, Lina
  • Cotfas, Liviu-Adrian

Abstract

This paper addresses the airplane passengers’ seat assignment problem while practicing social distancing among passengers. We proposed a mixed integer programming model to assign passengers to seats on an airplane in a manner that will respect two types of social distancing. One type of social distancing refers to passengers being seated far enough away from each other. The metric for this type of social distancing is how many passengers are seated so close to each other as to increase the risk of infection. The other type of social distancing refers to the distance between seat assignments and the aisle. That distance influences the health risk involved in passengers and crew members walking down the aisle. Corresponding metrics for both health risks are included in the objective function. To conduct simulation experiments, we define different scenarios distinguishing between the relative level of significance of each type of social distancing. The results suggest the seating assignments that best serve the intention of the scenarios. We also reformulate the initial model to determine seat assignments that maximize the number of passengers boarding an airplane while practicing social distancing among passengers. In the last part of this study, we compare the proposed scenarios with the recommended middle-seat blocking policy presently used by some airlines to keep social distancing among passengers. The results show that the proposed scenarios can provide social distancing among seated passengers similar to the middle-seat blocking policy, while reducing the number of passengers seated close to the aisle of an airplane.

Suggested Citation

  • Salari, Mostafa & Milne, R. John & Delcea, Camelia & Kattan, Lina & Cotfas, Liviu-Adrian, 2020. "Social distancing in airplane seat assignments," Journal of Air Transport Management, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:jaitra:v:89:y:2020:i:c:s0969699720304981
    DOI: 10.1016/j.jairtraman.2020.101915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699720304981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2020.101915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martina Fischetti & Jesper Runge Kristoffersen & Thomas Hjort & Michele Monaci & David Pisinger, 2020. "Vattenfall Optimizes Offshore Wind Farm Design," Interfaces, INFORMS, vol. 50(1), pages 80-94, January.
    2. Notomista, Gennaro & Selvaggio, Mario & Sbrizzi, Fiorentina & Di Maio, Gabriella & Grazioso, Stanislao & Botsch, Michael, 2016. "A fast airplane boarding strategy using online seat assignment based on passenger classification," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 140-149.
    3. Milne, R. John & Delcea, Camelia & Cotfas, Liviu-Adrian & Salari, Mostafa, 2019. "New methods for two-door airplane boarding using apron buses," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    4. Eitan Bachmat & Daniel Berend & Luba Sapir & Steven Skiena & Natan Stolyarov, 2009. "Analysis of Airplane Boarding Times," Operations Research, INFORMS, vol. 57(2), pages 499-513, April.
    5. Menkes H. L. van den Briel & J. René Villalobos & Gary L. Hogg & Tim Lindemann & Anthony V. Mulé, 2005. "America West Airlines Develops Efficient Boarding Strategies," Interfaces, INFORMS, vol. 35(3), pages 191-201, June.
    6. Zeineddine, Hassan, 2017. "A dynamically optimized aircraft boarding strategy," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 144-151.
    7. Mostafa Salari & R. John Milne & Lina Kattan, 2019. "Airplane boarding optimization considering reserved seats and passengers’ carry-on bags," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 806-823, September.
    8. Van Landeghem, H. & Beuselinck, A., 2002. "Reducing passenger boarding time in airplanes: A simulation based approach," European Journal of Operational Research, Elsevier, vol. 142(2), pages 294-308, October.
    9. Nyquist, David C. & McFadden, Kathleen L., 2008. "A study of the airline boarding problem," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 197-204.
    10. Milne, R. John & Salari, Mostafa, 2016. "Optimization of assigning passengers to seats on airplanes based on their carry-on luggage," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 104-110.
    11. Steffen, Jason H. & Hotchkiss, Jon, 2012. "Experimental test of airplane boarding methods," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 64-67.
    12. Milne, R. John & Kelly, Alexander R., 2014. "A new method for boarding passengers onto an airplane," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 93-100.
    13. Steffen, Jason H., 2008. "Optimal boarding method for airline passengers," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 146-150.
    14. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    15. Qiang, Sheng-Jie & Jia, Bin & Xie, Dong-Fan & Gao, Zi-You, 2014. "Reducing airplane boarding time by accounting for passengers' individual properties: A simulation based on cellular automaton," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 42-47.
    16. Bazargan, Massoud, 2007. "A linear programming approach for aircraft boarding strategy," European Journal of Operational Research, Elsevier, vol. 183(1), pages 394-411, November.
    17. Camelia Delcea & Liviu-Adrian Cotfas & Liliana Crăciun & Anca Gabriela Molanescu, 2018. "Are Seat and Aisle Interferences Affecting the Overall Airplane Boarding Time? An Agent-Based Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    18. Camelia Delcea & Liviu-Adrian Cotfas & Nora Chiriță & Ionuț Nica, 2018. "A Two-Door Airplane Boarding Approach When Using Apron Buses," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    19. Wittmann, Jürgen, 2019. "Customer-oriented optimization of the airplane boarding process," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 31-39.
    20. Ren, Xinhui & Xu, Xiaobing, 2018. "Experimental analyses of airplane boarding based on interference classification," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 55-63.
    21. Stefano Maria Iacus & Fabrizio Natale & Carlos Satamaria & Spyridon Spyratos & Michele Vespe, 2020. "Estimating and Projecting Air Passenger Traffic during the COVID-19 Coronavirus Outbreak and its Socio-Economic Impact," Papers 2004.08460, arXiv.org, revised Apr 2020.
    22. Tang, Tie-Qiao & Yang, Shao-Peng & Ou, Hui & Chen, Liang & Huang, Hai-Jun, 2018. "An aircraft boarding model accounting for group behavior," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 182-189.
    23. Mohler, George & Bertozzi, Andrea L. & Carter, Jeremy & Short, Martin B. & Sledge, Daniel & Tita, George E. & Uchida, Craig D. & Brantingham, P. Jeffrey, 2020. "Impact of social distancing during COVID-19 pandemic on crime in Los Angeles and Indianapolis," Journal of Criminal Justice, Elsevier, vol. 68(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Tsung-Pao & Zheng, Yi & Wu, Hung-Che & Deng, Ruixin, 2024. "The causal relationship between the COVID-19, Delta and Omicron pandemic and the air transport industry: Evidence from China," Journal of Air Transport Management, Elsevier, vol. 116(C).
    2. Haque, Md Tabish & Hamid, Faiz, 2023. "Social distancing and revenue management—A post-pandemic adaptation for railways," Omega, Elsevier, vol. 114(C).
    3. Sun, Xiaoqian & Wandelt, Sebastian & Zheng, Changhong & Zhang, Anming, 2021. "COVID-19 pandemic and air transportation: Successfully navigating the paper hurricane," Journal of Air Transport Management, Elsevier, vol. 94(C).
    4. Pardo González, Germán & Tabares Pozos, Alejandra & Quiroga, Camilo & à lvarez-Martínez, David, 2024. "Seat assignment recommendation in airlines purchase flow to increase ancillary revenue considering weight and balance constraints," Journal of Air Transport Management, Elsevier, vol. 117(C).
    5. Liu, Anyu & Kim, Yoo Ri & O'Connell, John Frankie, 2021. "COVID-19 and the aviation industry: The interrelationship between the spread of the COVID-19 pandemic and the frequency of flights on the EU market," Annals of Tourism Research, Elsevier, vol. 91(C).
    6. Samanci, Simge & Didem Atalay, Kumru & Bahar Isin, Feride, 2021. "Focusing on the big picture while observing the concerns of both managers and passengers in the post-covid era," Journal of Air Transport Management, Elsevier, vol. 90(C).
    7. Behrouz Pirouz & Domenico Mazzeo & Stefania Anna Palermo & Seyed Navid Naghib & Michele Turco & Patrizia Piro, 2021. "CFD Investigation of Vehicle’s Ventilation Systems and Analysis of ACH in Typical Airplanes, Cars, and Buses," Sustainability, MDPI, vol. 13(12), pages 1-22, June.
    8. Paul Schwarzbach & Julia Engelbrecht & Albrecht Michler & Michael Schultz & Oliver Michler, 2020. "Evaluation of Technology-Supported Distance Measuring to Ensure Safe Aircraft Boarding during COVID-19 Pandemic," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    9. Fischetti, Martina & Fischetti, Matteo & Stoustrup, Jakob, 2023. "Safe distancing in the time of COVID-19," European Journal of Operational Research, Elsevier, vol. 304(1), pages 139-149.
    10. Liao, Maozhu & Wu, Chuntao & Yan, Hongmeng, 2022. "Recovery of Chinese low-cost carriers after the outbreak of COVID-19 pandemic," Journal of Air Transport Management, Elsevier, vol. 105(C).
    11. Lamb, Tracy L. & Ruskin, Keith J. & Rice, Stephen & Khorassani, Leili & Winter, Scott R. & Truong, Dothang, 2021. "A qualitative analysis of social and emotional perspectives of airline passengers during the COVID-19 pandemic," Journal of Air Transport Management, Elsevier, vol. 94(C).
    12. Kim, Myeonghyeon & Sohn, Jeongwoong, 2022. "Passenger, airline, and policy responses to the COVID-19 crisis: The case of South Korea," Journal of Air Transport Management, Elsevier, vol. 98(C).
    13. Picchi Scardaoni, Marco & Magnacca, Fabio & Massai, Andrea & Cipolla, Vittorio, 2021. "Aircraft turnaround time estimation in early design phases: Simulation tools development and application to the case of box-wing architecture," Journal of Air Transport Management, Elsevier, vol. 96(C).
    14. Schultz, Michael & Soolaki, Majid & Salari, Mostafa & Bakhshian, Elnaz, 2023. "A combined optimization–simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities," Journal of Air Transport Management, Elsevier, vol. 106(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camelia Delcea & Liviu-Adrian Cotfas & Liliana Crăciun & Anca Gabriela Molanescu, 2018. "Are Seat and Aisle Interferences Affecting the Overall Airplane Boarding Time? An Agent-Based Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    2. Camelia Delcea & Liviu-Adrian Cotfas & Mostafa Salari & R. John Milne, 2018. "Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
    3. Milne, R. John & Delcea, Camelia & Cotfas, Liviu-Adrian & Salari, Mostafa, 2019. "New methods for two-door airplane boarding using apron buses," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    4. Zeineddine, Hassan, 2021. "Reducing the effect of passengers’ non-compliance with aircraft boarding rules," Journal of Air Transport Management, Elsevier, vol. 92(C).
    5. Camelia Delcea & Liviu-Adrian Cotfas & Nora Chiriță & Ionuț Nica, 2018. "A Two-Door Airplane Boarding Approach When Using Apron Buses," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    6. Schultz, Michael & Soolaki, Majid & Salari, Mostafa & Bakhshian, Elnaz, 2023. "A combined optimization–simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities," Journal of Air Transport Management, Elsevier, vol. 106(C).
    7. Michael Schultz & Jörg Fuchte, 2020. "Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    8. Ren, Xinhui & Zhou, Xiyu & Xu, Xiaobing, 2020. "A new model of luggage storage time while boarding an airplane: An experimental test," Journal of Air Transport Management, Elsevier, vol. 84(C).
    9. Michael Schultz & Michael Schmidt, 2018. "Advancements in Passenger Processes at Airports from Aircraft Perspective," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    10. Schultz, Michael & Evler, Jan & Asadi, Ehsan & Preis, Henning & Fricke, Hartmut & Wu, Cheng-Lung, 2020. "Future aircraft turnaround operations considering post-pandemic requirements," Journal of Air Transport Management, Elsevier, vol. 89(C).
    11. Ren, Xinhui & Xu, Xiaobing, 2018. "Experimental analyses of airplane boarding based on interference classification," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 55-63.
    12. Tang, Tie-Qiao & Yang, Shao-Peng & Ou, Hui & Chen, Liang & Huang, Hai-Jun, 2018. "An aircraft boarding model accounting for group behavior," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 182-189.
    13. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    14. Wittmann, Jürgen, 2019. "Customer-oriented optimization of the airplane boarding process," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 31-39.
    15. Zeineddine, Hassan, 2017. "A dynamically optimized aircraft boarding strategy," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 144-151.
    16. Qiang, Sheng-Jie & Jia, Bin & Jiang, Rui & Huang, Qing-Xia & Radwan, Essam & Gao, Zi-You & Wang, Yu-Qing, 2016. "Symmetrical design of strategy-pairs for enplaning and deplaning an airplane," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 52-60.
    17. Hutter, Leonie & Jaehn, Florian & Neumann, Simone, 2019. "Influencing factors on airplane boarding times," Omega, Elsevier, vol. 87(C), pages 177-190.
    18. Kisiel, Tomasz, 2020. "Resilience of passenger boarding strategies to priority fares offered by airlines," Journal of Air Transport Management, Elsevier, vol. 87(C).
    19. Hélio Moreira & Luís P. Ferreira & Nuno O. Fernandes & Francisco J. G. Silva & Ana L. Ramos & Paulo Ávila, 2023. "A Simulation Study of Aircraft Boarding Strategies," Mathematics, MDPI, vol. 11(20), pages 1-13, October.
    20. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:89:y:2020:i:c:s0969699720304981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.