IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v61y1997i1p102-128.html
   My bibliography  Save this article

Efficiency Comparisons in Multivariate Multiple Regression with Missing Outcomes

Author

Listed:
  • Rotnitzky, Andrea
  • Holcroft, Christina A.
  • Robins, James M.

Abstract

We consider a follow-up study in which an outcome variable is to be measured at fixed time points and covariate values are measured prior to start of follow-up. We assume that the conditional mean of the outcome given the covariates is a linear function of the covariates and is indexed by occasion-specific regression parameters. In this paper we study the asymptotic properties of several frequently used estimators of the regression parameters, namely the ordinary least squares (OLS), the generalized least squares (GLS), and the generalized estimating equation (GEE) estimators when the complete vector of outcomes is not always observed, the missing data patterns are monotone and the data are missing completely at random (MCAR) in the sense defined by Rubin [11]. We show that when the covariance of the outcome given the covariates is constant, as opposed to the nonmissing data case: (a) the GLS estimator is more efficient than the OLS estimator, (b) the GLS estimator is inefficient, and (c) the semiparametric efficient estimator in a model that imposes linear restrictions only on the conditional mean of the last occasion regression can be less efficient than the efficient estimator in a model that imposes linear restrictions on the conditional means of all the outcomes. We provide formulae and calculations of the asymptotic relative efficiencies of the considered estimators in three important cases: (1) for the estimators of the occasion-specific means, (2) for estimators of occasion-specific mean differences, and (3) for estimators of occasion-specific dose-response model parameters.

Suggested Citation

  • Rotnitzky, Andrea & Holcroft, Christina A. & Robins, James M., 1997. "Efficiency Comparisons in Multivariate Multiple Regression with Missing Outcomes," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 102-128, April.
  • Handle: RePEc:eee:jmvana:v:61:y:1997:i:1:p:102-128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91660-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Wang & Zhongzhe Ouyang & Xihong Lin, 2024. "Doubly Robust Estimation and Semiparametric Efficiency in Generalized Partially Linear Models with Missing Outcomes," Stats, MDPI, vol. 7(3), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verdier Valentin, 2018. "Local Semi-Parametric Efficiency of the Poisson Fixed Effects Estimator," Journal of Econometric Methods, De Gruyter, vol. 7(1), pages 1-10, January.
    2. Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023. "Design-Based Identification with Formula Instruments: A Review," NBER Working Papers 31393, National Bureau of Economic Research, Inc.
    3. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    4. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.
    5. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    6. Charlier, Erwin & Melenberg, Bertrand & van Soest, Arthur, 2000. "Estimation of a censored regression panel data model using conditional moment restrictions efficiently," Journal of Econometrics, Elsevier, vol. 95(1), pages 25-56, March.
    7. Blundell, Richard & Bond, Stephen, 2023. "Reprint of: Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 234(S), pages 38-55.
    8. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    9. Kaplan, David M. & Sun, Yixiao, 2017. "Smoothed Estimating Equations For Instrumental Variables Quantile Regression," Econometric Theory, Cambridge University Press, vol. 33(1), pages 105-157, February.
    10. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.
    11. Bent Jesper Christensen & Michael Sørensen, 2008. "Optimal inference in dynamic models with conditional moment restrictions," CREATES Research Papers 2008-51, Department of Economics and Business Economics, Aarhus University.
    12. Lancaster, Tony & Imbens, Guido, 1996. "Case-control studies with contaminated controls," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 145-160.
    13. Wang, Xuexin, 2015. "A Note on Consistent Conditional Moment Tests," MPRA Paper 69005, University Library of Munich, Germany.
    14. Park, Byeong U. & Sickles, Robin C. & Simar, Leopold, 2003. "Semiparametric-efficient estimation of AR(1) panel data models," Journal of Econometrics, Elsevier, vol. 117(2), pages 279-309, December.
    15. Stefan Nagel, 2013. "Empirical Cross-Sectional Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 5(1), pages 167-199, November.
    16. Fu, Lianyan & Gao, Wei & Shi, Ning-Zhong, 2011. "Estimation of relative average treatment effects with misclassification," Economics Letters, Elsevier, vol. 111(1), pages 95-98, April.
    17. Jan De Loecker & Paul T. Scott, 2016. "Estimating market power Evidence from the US Brewing Industry," NBER Working Papers 22957, National Bureau of Economic Research, Inc.
    18. Verboven, Frank & Bourreau, Marc & Sun, Yutec, 2018. "Market Entry, Fighting Brands and Tacit Collusion: The Case of the French Mobile Telecommunications Market," CEPR Discussion Papers 12866, C.E.P.R. Discussion Papers.
    19. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    20. Victor Chernozhukov & Iván Fernández‐Val & Jinyong Hahn & Whitney Newey, 2013. "Average and Quantile Effects in Nonseparable Panel Models," Econometrica, Econometric Society, vol. 81(2), pages 535-580, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:61:y:1997:i:1:p:102-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.