IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v58y2017i1d10.1007_s00362-015-0693-z.html
   My bibliography  Save this article

Kernel regression estimation for incomplete data with applications

Author

Listed:
  • Majid Mojirsheibani

    (California State University)

  • Timothy Reese

    (California State University)

Abstract

Methods are proposed to construct kernel estimators of a regression function in the presence of incomplete data. Furthermore, exponential upper bounds are derived on the performance of the $$L_p$$ L p norms of the proposed estimators, which can then be used to establish various strong convergence results. The presence of incomplete data points are handled by a Horvitz–Thompson-type inverse weighting approach, where the unknown selection probabilities are estimated by both kernel regression and least-squares methods. As an immediate application of these results, the problem of nonparametric classification with partially observed data will be studied.

Suggested Citation

  • Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
  • Handle: RePEc:spr:stpapr:v:58:y:2017:i:1:d:10.1007_s00362-015-0693-z
    DOI: 10.1007/s00362-015-0693-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-015-0693-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-015-0693-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qihua & Sun, Zhihua, 2007. "Estimation in partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1470-1493, August.
    2. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    3. Wang, Lu & Rotnitzky, Andrea & Lin, Xihong, 2010. "Nonparametric Regression With Missing Outcomes Using Weighted Kernel Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1135-1146.
    4. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    5. X. Hu & Bin Zhang, 2012. "Pseudolikelihood ratio test with biased observations," Statistical Papers, Springer, vol. 53(2), pages 387-400, May.
    6. H. Toutenburg & Shalabh, 2003. "Estimation of regression models with equi-correlated responses when some observations on the response variable are missing," Statistical Papers, Springer, vol. 44(2), pages 217-232, April.
    7. Michael Kohler & Adam Krzyżak & Harro Walk, 2003. "Strong consistency of automatic kernel regression estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 287-308, June.
    8. S. González & M. Rueda & A. Arcos, 2008. "An improved estimator to analyse missing data," Statistical Papers, Springer, vol. 49(4), pages 791-796, October.
    9. Walk, Harro, 2002. "On cross-validation in kernel and partitioning regression estimation," Statistics & Probability Letters, Elsevier, vol. 59(2), pages 113-123, September.
    10. Hua Liang & Suojin Wang & Raymond J. Carroll, 2007. "Partially linear models with missing response variables and error-prone covariates," Biometrika, Biometrika Trust, vol. 94(1), pages 185-198.
    11. Omid Karimi & Mohsen Mohammadzadeh, 2012. "Bayesian spatial regression models with closed skew normal correlated errors and missing observations," Statistical Papers, Springer, vol. 53(1), pages 205-218, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ash Abebe & Huybrechts F. Bindele & Masego Otlaadisa & Boikanyo Makubate, 2021. "Robust estimation of single index models with responses missing at random," Statistical Papers, Springer, vol. 62(5), pages 2195-2225, October.
    2. Mojirsheibani, Majid & Shaw, Crystal, 2018. "Classification with incomplete functional covariates," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 40-46.
    3. Li Cai & Suojin Wang, 2021. "Global statistical inference for the difference between two regression mean curves with covariates possibly partially missing," Statistical Papers, Springer, vol. 62(6), pages 2573-2602, December.
    4. Mojirsheibani, Majid, 2021. "On classification with nonignorable missing data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levon Demirdjian & Majid Mojirsheibani, 2019. "Kernel classification with missing data and the choice of smoothing parameters," Statistical Papers, Springer, vol. 60(5), pages 1487-1513, October.
    2. Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
    3. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    4. Nengxiang Ling & Lilei Cheng & Philippe Vieu & Hui Ding, 2022. "Missing responses at random in functional single index model for time series data," Statistical Papers, Springer, vol. 63(2), pages 665-692, April.
    5. Ash Abebe & Huybrechts F. Bindele & Masego Otlaadisa & Boikanyo Makubate, 2021. "Robust estimation of single index models with responses missing at random," Statistical Papers, Springer, vol. 62(5), pages 2195-2225, October.
    6. Shuanghua Luo & Cheng-yi Zhang, 2016. "Nonparametric $$M$$ M -type regression estimation under missing response data," Statistical Papers, Springer, vol. 57(3), pages 641-664, September.
    7. Bindele, Huybrechts F., 2018. "Covariates missing at random under signed-rank inference," Econometrics and Statistics, Elsevier, vol. 8(C), pages 78-93.
    8. Yan-Ting Xiao & Fu-Xiao Li, 2020. "Estimation in partially linear varying-coefficient errors-in-variables models with missing response variables," Computational Statistics, Springer, vol. 35(4), pages 1637-1658, December.
    9. Wangli Xu & Xu Guo & Lixing Zhu, 2012. "Goodness-of-fitting for partial linear model with missing response at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 103-118.
    10. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    11. Xiaohui Liu & Zhizhong Wang & Xuemei Hu, 2011. "Testing heteroscedasticity in partially linear models with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 321-337.
    12. Bianco, Ana M. & Boente, Graciela & González-Manteiga, Wenceslao & Pérez-González, Ana, 2015. "Robust inference in partially linear models with missing responses," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 88-98.
    13. Timothy Reese & Majid Mojirsheibani, 2017. "On the $$L_p$$ L p norms of kernel regression estimators for incomplete data with applications to classification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 81-112, March.
    14. Biao Zhang, 2016. "Empirical Likelihood in Causal Inference," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 201-231, February.
    15. Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Papers 2206.08503, arXiv.org, revised Apr 2024.
    16. Mariela Sued & Marina Valdora & Víctor Yohai, 2020. "Robust doubly protected estimators for quantiles with missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 819-843, September.
    17. Mojirsheibani, Majid & Montazeri, Zahra, 2007. "On nonparametric classification with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 1051-1071, May.
    18. Firouzeh Noghrehchi & Jakub Stoklosa & Spiridon Penev, 2020. "Multiple imputation and functional methods in the presence of measurement error and missingness in explanatory variables," Computational Statistics, Springer, vol. 35(3), pages 1291-1317, September.
    19. Bravo, Francesco & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2015. "Wilks' Phenomenon in Two-Step Semiparametric Empirical Likelihood Inference," LIDAM Discussion Papers ISBA 2015016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Lu Wang & Zhongzhe Ouyang & Xihong Lin, 2024. "Doubly Robust Estimation and Semiparametric Efficiency in Generalized Partially Linear Models with Missing Outcomes," Stats, MDPI, vol. 7(3), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:58:y:2017:i:1:d:10.1007_s00362-015-0693-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.