IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i12p3344-3354.html
   My bibliography  Save this article

Efficient semiparametric estimation via Cholesky decomposition for longitudinal data

Author

Listed:
  • Chen, Ziqi
  • Shi, Ning-Zhong
  • Gao, Wei
  • Tang, Man-Lai

Abstract

Semiparametric methods for longitudinal data with dependence within subjects have recently received considerable attention. Existing approaches that focus on modeling the mean structure require a correct specification of the covariance structure as misspecified covariance structures may lead to inefficient or biased mean parameter estimates. Besides, computation and estimation problems arise when the repeated measurements are taken at irregular and possibly subject-specific time points, the dimension of the covariance matrix is large, and the positive definiteness of the covariance matrix is required. In this article, we propose a profile kernel approach based on semiparametric partially linear regression models for the mean and model covariance structures simultaneously, motivated by the modified Cholesky decomposition. We also study the large-sample properties of the parameter estimates. The proposed method is evaluated through simulation and applied to a real dataset. Both theoretical and empirical results indicate that properly taking into account the within-subject correlation among the responses using our method can substantially improve efficiency.

Suggested Citation

  • Chen, Ziqi & Shi, Ning-Zhong & Gao, Wei & Tang, Man-Lai, 2011. "Efficient semiparametric estimation via Cholesky decomposition for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3344-3354, December.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3344-3354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947311002428
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    2. Fan, Jianqing & Huang, Tao & Li, Runze, 2007. "Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 632-641, June.
    3. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    4. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    5. Wei Biao Wu, 2003. "Nonparametric estimation of large covariance matrices of longitudinal data," Biometrika, Biometrika Trust, vol. 90(4), pages 831-844, December.
    6. Naisyin Wang & Raymond J. Carroll & Xihong Lin, 2005. "Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 147-157, March.
    7. You-Gan Wang, 2003. "Working correlation structure misspecification, estimation and covariate design: Implications for generalised estimating equations performance," Biometrika, Biometrika Trust, vol. 90(1), pages 29-41, March.
    8. Huajun Ye & Jianxin Pan, 2006. "Modelling of covariance structures in generalised estimating equations for longitudinal data," Biometrika, Biometrika Trust, vol. 93(4), pages 927-941, December.
    9. Michael J. Daniels, 2002. "Bayesian analysis of covariance matrices and dynamic models for longitudinal data," Biometrika, Biometrika Trust, vol. 89(3), pages 553-566, August.
    10. Li, Jialiang & Xia, Yingcun & Palta, Mari & Shankar, Anoop, 2009. "Impact of unknown covariance structures in semiparametric models for longitudinal data: An application to Wisconsin diabetes data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4186-4197, October.
    11. M. Pourahmadi & M. J. Daniels, 2002. "Dynamic Conditionally Linear Mixed Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 58(1), pages 225-231, March.
    12. María José Lombardía & Stefan Sperlich, 2008. "Semiparametric inference in generalized mixed effects models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 913-930, November.
    13. You, Jinhong & Zhou, Xian, 2006. "Statistical inference in a panel data semiparametric regression model with serially correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 844-873, April.
    14. Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
    15. Leng, Chenlei & Zhang, Weiping & Pan, Jianxin, 2010. "Semiparametric Mean–Covariance Regression Analysis for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 181-193.
    16. Xihong Lin & Raymond J. Carroll, 2006. "Semiparametric estimation in general repeated measures problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 69-88, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziqi Chen & Man†Lai Tang & Wei Gao, 2018. "A profile likelihood approach for longitudinal data analysis," Biometrics, The International Biometric Society, vol. 74(1), pages 220-228, March.
    2. Xueying Zheng & Wing Fung & Zhongyi Zhu, 2013. "Robust estimation in joint mean–covariance regression model for longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 617-638, August.
    3. Peng, Cheng & Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2022. "Latent Gaussian copula models for longitudinal binary data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Jia Chen & Degui Li & Hua Liang & Suojin Wang, 2014. "Semiparametric GEE Analysis in Partially Linear Single-Index Models for Longitudinal Data," Discussion Papers 14/26, Department of Economics, University of York.
    5. Jia, Shengji & Zhang, Chunming & Lu, Haoran, 2022. "Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    6. Rui Li & Chenlei Leng & Jinhong You, 2017. "A Semiparametric Regression Model for Longitudinal Data with Non-stationary Errors," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 932-950, December.
    7. Luo, Renwen & Pan, Jianxin, 2022. "Conditional generalized estimating equations of mean-variance-correlation for clustered data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    8. Al Kadiri, M. & Carroll, R.J. & Wand, M.P., 2010. "Marginal longitudinal semiparametric regression via penalized splines," Statistics & Probability Letters, Elsevier, vol. 80(15-16), pages 1242-1252, August.
    9. Feng, Sanying & Lian, Heng & Xue, Liugen, 2016. "A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 98-109.
    10. Tuglus Catherine & van der Laan Mark J., 2011. "Repeated Measures Semiparametric Regression Using Targeted Maximum Likelihood Methodology with Application to Transcription Factor Activity Discovery," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-31, January.
    11. Hamadi, Malika & Heinen, Andréas, 2015. "Firm performance when ownership is very concentrated: Evidence from a semiparametric panel," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 172-194.
    12. Shakhawat Hossain & Le An Lac, 2021. "Optimal shrinkage estimations in partially linear single-index models for binary longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 811-835, December.
    13. Brajendra C. Sutradhar & Vandna Jowaheer & R. Prabhakar Rao, 2016. "Semi-Parametric Models for Negative Binomial Panel Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(2), pages 269-303, August.
    14. Cho, Hyunkeun & Kim, Seonjin, 2017. "Model specification test in a semiparametric regression model for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 105-116.
    15. José Lombardía, María & Sperlich, Stefan, 2012. "A new class of semi-mixed effects models and its application in small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2903-2917.
    16. M. Taavoni & M. Arashi, 2021. "Kernel estimation in semiparametric mixed effect longitudinal modeling," Statistical Papers, Springer, vol. 62(3), pages 1095-1116, June.
    17. Li, Jialiang & Xia, Yingcun & Palta, Mari & Shankar, Anoop, 2009. "Impact of unknown covariance structures in semiparametric models for longitudinal data: An application to Wisconsin diabetes data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4186-4197, October.
    18. Henderson, Daniel J. & Carroll, Raymond J. & Li, Qi, 2008. "Nonparametric estimation and testing of fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 144(1), pages 257-275, May.
    19. Yi, Grace Y. & He, Wenqing & Liang, Hua, 2009. "Analysis of correlated binary data under partially linear single-index logistic models," Journal of Multivariate Analysis, Elsevier, vol. 100(2), pages 278-290, February.
    20. Grace Yi & Wenqing He & Hua Liang, 2011. "Semiparametric marginal and association regression methods for clustered binary data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 511-533, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3344-3354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.