IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v69y2013i2p386-395.html
   My bibliography  Save this article

Generalized Partially Linear Models for Incomplete Longitudinal Data In the Presence of Population-Level Information

Author

Listed:
  • Baojiang Chen
  • Xiao-Hua Zhou

Abstract

No abstract is available for this item.

Suggested Citation

  • Baojiang Chen & Xiao-Hua Zhou, 2013. "Generalized Partially Linear Models for Incomplete Longitudinal Data In the Presence of Population-Level Information," Biometrics, The International Biometric Society, vol. 69(2), pages 386-395, June.
  • Handle: RePEc:bla:biomet:v:69:y:2013:i:2:p:386-395
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12015
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suojin Wang & Lianfen Qian & Raymond J. Carroll, 2010. "Generalized empirical likelihood methods for analyzing longitudinal data," Biometrika, Biometrika Trust, vol. 97(1), pages 79-93.
    2. Yi, Grace Y. & He, Wenqing & Liang, Hua, 2009. "Analysis of correlated binary data under partially linear single-index logistic models," Journal of Multivariate Analysis, Elsevier, vol. 100(2), pages 278-290, February.
    3. Hua Liang & Suojin Wang & Raymond J. Carroll, 2007. "Partially linear models with missing response variables and error-prone covariates," Biometrika, Biometrika Trust, vol. 94(1), pages 185-198.
    4. Wang, Qihua & Sun, Zhihua, 2007. "Estimation in partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1470-1493, August.
    5. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    6. Jing Qin & Biao Zhang, 2007. "Empirical‐likelihood‐based inference in missing response problems and its application in observational studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 101-122, February.
    7. Liang, Hua, 2008. "Generalized partially linear models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 880-895, May.
    8. Naisyin Wang & Raymond J. Carroll & Xihong Lin, 2005. "Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 147-157, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mozhgan Taavoni & Mohammad Arashi & Samuel Manda, 2023. "Multicollinearity and Linear Predictor Link Function Problems in Regression Modelling of Longitudinal Data," Mathematics, MDPI, vol. 11(3), pages 1-9, January.
    2. Huiming Lin & Bo Fu & Guoyou Qin & Zhongyi Zhu, 2017. "Doubly robust estimation of generalized partial linear models for longitudinal data with dropouts," Biometrics, The International Biometric Society, vol. 73(4), pages 1132-1139, December.
    3. Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2016. "Simultaneous mean and covariance estimation of partially linear models for longitudinal data with missing responses and covariate measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 24-39.
    4. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    2. M. Hristache & V. Patilea, 2017. "Conditional moment models with data missing at random," Biometrika, Biometrika Trust, vol. 104(3), pages 735-742.
    3. Bindele, Huybrechts F., 2018. "Covariates missing at random under signed-rank inference," Econometrics and Statistics, Elsevier, vol. 8(C), pages 78-93.
    4. Xiaohui Liu & Zhizhong Wang & Xuemei Hu, 2011. "Testing heteroscedasticity in partially linear models with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 321-337.
    5. Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Zhangong Zhou & Linjun Tang, 2019. "Testing for parametric component of partially linear models with missing covariates," Statistical Papers, Springer, vol. 60(3), pages 747-760, June.
    7. Wangli Xu & Xu Guo, 2013. "Checking the adequacy of partial linear models with missing covariates at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 473-490, June.
    8. Grace Yi & Wenqing He & Hua Liang, 2011. "Semiparametric marginal and association regression methods for clustered binary data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 511-533, June.
    9. Biao Zhang, 2016. "Empirical Likelihood in Causal Inference," Econometric Reviews, Taylor & Francis Journals, vol. 35(2), pages 201-231, February.
    10. Sun, Zhihua & Ye, Xue & Sun, Liuquan, 2015. "Consistent test of error-in-variables partially linear model with auxiliary variables," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 118-131.
    11. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    12. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
    13. Wangli Xu & Xu Guo & Lixing Zhu, 2012. "Goodness-of-fitting for partial linear model with missing response at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 103-118.
    14. Tang, Niansheng & Wang, Wenjun, 2019. "Robust estimation of generalized estimating equations with finite mixture correlation matrices and missing covariates at random for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 640-655.
    15. Chen, Ziqi & Shi, Ning-Zhong & Gao, Wei & Tang, Man-Lai, 2011. "Efficient semiparametric estimation via Cholesky decomposition for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3344-3354, December.
    16. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    17. Xie Yanmei & Zhang Biao, 2017. "Empirical Likelihood in Nonignorable Covariate-Missing Data Problems," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-20, May.
    18. Dengke Xu & Jiang Du, 2020. "Nonparametric quantile regression estimation for functional data with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(8), pages 977-990, November.
    19. Yongsong Qin & Jianjun Li, 2011. "Empirical likelihood for partially linear models with missing responses at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 497-511.
    20. S. Hossain & S. Ejaz Ahmed & Grace Y. Yi & B. Chen, 2016. "Shrinkage and pretest estimators for longitudinal data analysis under partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 531-549, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:69:y:2013:i:2:p:386-395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.