IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v23y2011i2p321-337.html
   My bibliography  Save this article

Testing heteroscedasticity in partially linear models with missing covariates

Author

Listed:
  • Xiaohui Liu
  • Zhizhong Wang
  • Xuemei Hu

Abstract

The purpose of this paper is to investigate the underlying heteroscedasticity in a partially linear model with missing covariates by using the empirical likelihood method. Two new test statistics are proposed based on the inverse probability-weighted idea. Under the null hypothesis, the resulting test statistics are shown to have standard chi-squared distributions asymptotically. Simulation studies show that the proposed statistics behave well. An example of an AIDS clinical trial data set is also used for illustrating our methods.

Suggested Citation

  • Xiaohui Liu & Zhizhong Wang & Xuemei Hu, 2011. "Testing heteroscedasticity in partially linear models with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 321-337.
  • Handle: RePEc:taf:gnstxx:v:23:y:2011:i:2:p:321-337
    DOI: 10.1080/10485252.2010.515306
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2010.515306
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2010.515306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Dette & A. Munk, 1998. "Testing heteroscedasticity in nonparametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 693-708.
    2. Wang, Qihua & Sun, Zhihua, 2007. "Estimation in partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1470-1493, August.
    3. Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
    4. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    5. Lang Wu & Hulin Wu, 2002. "Missing time‐dependent covariates in human immunodeficiency virus dynamic models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(3), pages 297-318, July.
    6. Wong, Heung & Liu, Feng & Chen, Min & Ip, Wai Cheung, 2009. "Empirical likelihood based diagnostics for heteroscedasticity in partial linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3466-3477, July.
    7. Gao, Jiti, 1994. "Asymptotic theory for partly linear models," MPRA Paper 40452, University Library of Munich, Germany, revised 02 Dec 1994.
    8. Jeffrey S. Simonoff & Chih‐Ling Tsai, 1994. "Use of Modified Profile Likelihood for Improved Tests of Constancy of Variance in Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(2), pages 357-370, June.
    9. Hua Liang & Suojin Wang & Raymond J. Carroll, 2007. "Partially linear models with missing response variables and error-prone covariates," Biometrika, Biometrika Trust, vol. 94(1), pages 185-198.
    10. You, Jinhong & Chen, Gemai, 2005. "Testing heteroscedasticity in partially linear regression models," Statistics & Probability Letters, Elsevier, vol. 73(1), pages 61-70, June.
    11. Wu L., 2002. "A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 955-964, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "Rejoinder on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 442-447, September.
    2. Zhangong Zhou & Linjun Tang, 2019. "Testing for parametric component of partially linear models with missing covariates," Statistical Papers, Springer, vol. 60(3), pages 747-760, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    2. Ash Abebe & Huybrechts F. Bindele & Masego Otlaadisa & Boikanyo Makubate, 2021. "Robust estimation of single index models with responses missing at random," Statistical Papers, Springer, vol. 62(5), pages 2195-2225, October.
    3. Wong, Heung & Liu, Feng & Chen, Min & Ip, Wai Cheung, 2009. "Empirical likelihood based diagnostics for heteroscedasticity in partial linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3466-3477, July.
    4. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    5. Wangli Xu & Xu Guo & Lixing Zhu, 2012. "Goodness-of-fitting for partial linear model with missing response at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 103-118.
    6. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    7. Nengxiang Ling & Lilei Cheng & Philippe Vieu & Hui Ding, 2022. "Missing responses at random in functional single index model for time series data," Statistical Papers, Springer, vol. 63(2), pages 665-692, April.
    8. Wangli Xu & Xu Guo, 2013. "Checking the adequacy of partial linear models with missing covariates at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 473-490, June.
    9. Baojiang Chen & Xiao-Hua Zhou, 2013. "Generalized Partially Linear Models for Incomplete Longitudinal Data In the Presence of Population-Level Information," Biometrics, The International Biometric Society, vol. 69(2), pages 386-395, June.
    10. M. Hristache & V. Patilea, 2017. "Conditional moment models with data missing at random," Biometrika, Biometrika Trust, vol. 104(3), pages 735-742.
    11. Yongsong Qin & Jianjun Li, 2011. "Empirical likelihood for partially linear models with missing responses at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 497-511.
    12. Bindele, Huybrechts F., 2018. "Covariates missing at random under signed-rank inference," Econometrics and Statistics, Elsevier, vol. 8(C), pages 78-93.
    13. Bianco, Ana M. & Boente, Graciela & González-Manteiga, Wenceslao & Pérez-González, Ana, 2015. "Robust inference in partially linear models with missing responses," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 88-98.
    14. Zhu, Xuehu & Guo, Xu & Lin, Lu & Zhu, Lixing, 2015. "Heteroscedasticity checks for single index models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 41-55.
    15. Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    16. Zhangong Zhou & Linjun Tang, 2019. "Testing for parametric component of partially linear models with missing covariates," Statistical Papers, Springer, vol. 60(3), pages 747-760, June.
    17. Yan-Ting Xiao & Fu-Xiao Li, 2020. "Estimation in partially linear varying-coefficient errors-in-variables models with missing response variables," Computational Statistics, Springer, vol. 35(4), pages 1637-1658, December.
    18. Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
    19. Tianfa Xie & Zhihua Sun & Liuquan Sun, 2012. "A consistent model specification test for a partial linear model with covariates missing at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 841-856, December.
    20. Sun, Zhihua & Ye, Xue & Sun, Liuquan, 2015. "Consistent test of error-in-variables partially linear model with auxiliary variables," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 118-131.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:23:y:2011:i:2:p:321-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.