IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v65y2013i4p639-665.html
   My bibliography  Save this article

Empirical likelihood semiparametric nonlinear regression analysis for longitudinal data with responses missing at random

Author

Listed:
  • Nian-Sheng Tang
  • Pu-Ying Zhao

Abstract

This paper develops the empirical likelihood (EL) inference on parameters and baseline function in a semiparametric nonlinear regression model for longitudinal data in the presence of missing response variables. We propose two EL-based ratio statistics for regression coefficients by introducing the working covariance matrix and a residual-adjusted EL ratio statistic for baseline function. We establish asymptotic properties of the EL estimators for regression coefficients and baseline function. Simulation studies are used to investigate the finite sample performance of our proposed EL methodologies. An AIDS clinical trial data set is used to illustrate our proposed methodologies. Copyright The Institute of Statistical Mathematics, Tokyo 2013

Suggested Citation

  • Nian-Sheng Tang & Pu-Ying Zhao, 2013. "Empirical likelihood semiparametric nonlinear regression analysis for longitudinal data with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 639-665, August.
  • Handle: RePEc:spr:aistmt:v:65:y:2013:i:4:p:639-665
    DOI: 10.1007/s10463-012-0387-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-012-0387-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-012-0387-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sik-Yum Lee, 2006. "Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 71(3), pages 541-564, September.
    2. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    3. Chen, Qingxia & Ibrahim, Joseph G. & Chen, Ming-Hui & Senchaudhuri, Pralay, 2008. "Theory and inference for regression models with missing responses and covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1302-1331, July.
    4. Jianqing Fan & Runze Li, 2004. "New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 710-723, January.
    5. Kim, Jae Kwang & Yu, Cindy Long, 2011. "A Semiparametric Estimation of Mean Functionals With Nonignorable Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 157-165.
    6. Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
    7. Runze Li & Lei Nie, 2008. "Efficient Statistical Inference Procedures for Partially Nonlinear Models and their Applications," Biometrics, The International Biometric Society, vol. 64(3), pages 904-911, September.
    8. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
    9. Yi G.Y. & Cook R.J., 2002. "Marginal Methods for Incomplete Longitudinal Data Arising in Clusters," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1071-1080, December.
    10. Liang, Hua, 2008. "Generalized partially linear models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 880-895, May.
    11. Hua Liang & Suojin Wang & Raymond J. Carroll, 2007. "Partially linear models with missing response variables and error-prone covariates," Biometrika, Biometrika Trust, vol. 94(1), pages 185-198.
    12. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    2. Tang, Niansheng & Wang, Wenjun, 2019. "Robust estimation of generalized estimating equations with finite mixture correlation matrices and missing covariates at random for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 640-655.
    3. Zhang, Jun & Feng, Zhenghui & Zhou, Bu, 2014. "A revisit to correlation analysis for distortion measurement error data," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 116-129.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    2. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    3. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    4. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    5. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    6. Runze Li & Lei Nie, 2008. "Efficient Statistical Inference Procedures for Partially Nonlinear Models and their Applications," Biometrics, The International Biometric Society, vol. 64(3), pages 904-911, September.
    7. Chen, Xue-Dong & Tang, Nian-Sheng, 2010. "Bayesian analysis of semiparametric reproductive dispersion mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2145-2158, September.
    8. Liu, Jingyuan & Lou, Lejia & Li, Runze, 2018. "Variable selection for partially linear models via partial correlation," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 418-434.
    9. Feng, Jiarui & Zhu, Zhongyi, 2011. "Semiparametric analysis of longitudinal zero-inflated count data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 61-72, January.
    10. Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2015. "Quantile regression and variable selection of partial linear single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 375-409, April.
    11. Yunlu Jiang & Guo-Liang Tian & Yu Fei, 2019. "A robust and efficient estimation method for partially nonlinear models via a new MM algorithm," Statistical Papers, Springer, vol. 60(6), pages 2063-2085, December.
    12. Song Liu & Yuhong Yang, 2012. "Combining models in longitudinal data analysis," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 233-254, April.
    13. Bindele, Huybrechts F., 2018. "Covariates missing at random under signed-rank inference," Econometrics and Statistics, Elsevier, vol. 8(C), pages 78-93.
    14. Göran Kauermann & Mehboob Ali, 2021. "Semi-parametric regression when some (expensive) covariates are missing by design," Statistical Papers, Springer, vol. 62(4), pages 1675-1696, August.
    15. Gressani, Oswaldo & Lambert, Philippe, 2020. "The Laplace-P-spline methodology for fast approximate Bayesian inference in additive partial linear models," LIDAM Discussion Papers ISBA 2020020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.
    17. Bravo, Francesco, 2015. "Semiparametric estimation with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 329-346.
    18. Tang, Nian-Sheng & Duan, Xing-De, 2012. "A semiparametric Bayesian approach to generalized partial linear mixed models for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4348-4365.
    19. Yi, Grace Y. & He, Wenqing & Liang, Hua, 2009. "Analysis of correlated binary data under partially linear single-index logistic models," Journal of Multivariate Analysis, Elsevier, vol. 100(2), pages 278-290, February.
    20. Grace Yi & Wenqing He & Hua Liang, 2011. "Semiparametric marginal and association regression methods for clustered binary data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 511-533, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:65:y:2013:i:4:p:639-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.