Using Cuckoo Search Algorithm with Q -Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hong Duan & Wei Zhao & Gaige Wang & Xuehua Feng, 2012. "Test-Sheet Composition Using Analytic Hierarchy Process and Hybrid Metaheuristic Algorithm TS/BBO," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-22, November.
- Sergeyev, Yaroslav D. & Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2017. "Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 96-109.
- Gai-Ge Wang & Suash Deb & Xinchao Zhao & Zhihua Cui, 2018. "A new monarch butterfly optimization with an improved crossover operator," Operational Research, Springer, vol. 18(3), pages 731-755, October.
- Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Juan Li & Yuan-Hua Yang & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Moth Search: Variants, Hybrids, and Applications," Mathematics, MDPI, vol. 10(21), pages 1-19, November.
- Juan Li & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Survey of Lévy Flight-Based Metaheuristics for Optimization," Mathematics, MDPI, vol. 10(15), pages 1-27, August.
- Jun Wu & Xin Liu & Yuanyuan Li & Liping Yang & Wenyan Yuan & Yile Ba, 2022. "A Two-Stage Model with an Improved Clustering Algorithm for a Distribution Center Location Problem under Uncertainty," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng-Long Wei & Gai-Ge Wang, 2020. "Hybrid Annealing Krill Herd and Quantum-Behaved Particle Swarm Optimization," Mathematics, MDPI, vol. 8(9), pages 1-23, August.
- Jiang Li & Lihong Guo & Yan Li & Chang Liu, 2019. "Enhancing Elephant Herding Optimization with Novel Individual Updating Strategies for Large-Scale Optimization Problems," Mathematics, MDPI, vol. 7(5), pages 1-35, April.
- Yong Wang & Kunzhao Wang & Gaige Wang, 2022. "Neural Network Algorithm with Dropout Using Elite Selection," Mathematics, MDPI, vol. 10(11), pages 1-17, May.
- R. Cavoretto & A. Rossi & M. S. Mukhametzhanov & Ya. D. Sergeyev, 2021. "On the search of the shape parameter in radial basis functions using univariate global optimization methods," Journal of Global Optimization, Springer, vol. 79(2), pages 305-327, February.
- Ziadi, Raouf & Bencherif-Madani, Abdelatif & Ellaia, Rachid, 2020. "A deterministic method for continuous global optimization using a dense curve," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 62-91.
- Gui Li & Gai-Ge Wang & Shan Wang, 2021. "Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy for Many-Objective Optimization," Mathematics, MDPI, vol. 9(4), pages 1-34, February.
- Sergey S. Ketkov & Oleg A. Prokopyev & Lisa M. Maillart, 2023. "Planning of life-depleting preventive maintenance activities with replacements," Annals of Operations Research, Springer, vol. 324(1), pages 1461-1483, May.
- Linas Stripinis & Remigijus Paulavičius, 2023. "Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
- Jean Bigeon & Sébastien Le Digabel & Ludovic Salomon, 2021. "DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 301-338, June.
- Konstantin Barkalov & Irek Gubaydullin & Evgeny Kozinov & Ilya Lebedev & Roza Faskhutdinova & Azamat Faskhutdinov & Leniza Enikeeva, 2022. "On Solving the Problem of Finding Kinetic Parameters of Catalytic Isomerization of the Pentane-Hexane Fraction Using a Parallel Global Search Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-13, October.
- Yan Liang & Xianzhi Hu & Gang Hu & Wanting Dou, 2022. "An Enhanced Northern Goshawk Optimization Algorithm and Its Application in Practical Optimization Problems," Mathematics, MDPI, vol. 10(22), pages 1-33, November.
- Nebojsa Bacanin & Timea Bezdan & Eva Tuba & Ivana Strumberger & Milan Tuba, 2020. "Monarch Butterfly Optimization Based Convolutional Neural Network Design," Mathematics, MDPI, vol. 8(6), pages 1-33, June.
- Chen, Chengcheng & Wang, Xianchang & Yu, Helong & Wang, Mingjing & Chen, Huiling, 2021. "Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 291-318.
- Umesh Balande & Deepti Shrimankar, 2019. "SRIFA: Stochastic Ranking with Improved-Firefly-Algorithm for Constrained Optimization Engineering Design Problems," Mathematics, MDPI, vol. 7(3), pages 1-26, March.
- Blondin, M.J. & Sicard, P. & Pardalos, P.M., 2019. "Controller Tuning Approach with robustness, stability and dynamic criteria for the original AVR System," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 168-182.
- Xiaoqi Zhao & Haipeng Qu & Wenjie Lv & Shuo Li & Jianliang Xu, 2021. "MooFuzz: Many-Objective Optimization Seed Schedule for Fuzzer," Mathematics, MDPI, vol. 9(3), pages 1-19, January.
- Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
- Hassan M. Hussein Farh, 2024. "Neural Network Algorithm with Reinforcement Learning for Microgrid Techno-Economic Optimization," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
- Minhee Kim & Junjae Chae, 2019. "Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path," Mathematics, MDPI, vol. 7(2), pages 1-21, February.
- Wenyu Wang & Taimoor Akhtar & Christine A. Shoemaker, 2022. "Integrating $$\varepsilon $$ ε -dominance and RBF surrogate optimization for solving computationally expensive many-objective optimization problems," Journal of Global Optimization, Springer, vol. 82(4), pages 965-992, April.
More about this item
Keywords
global optimization; cuckoo search algorithm; Q- learning; mutation; self-adaptive step size;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:2:p:149-:d:311424. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.