IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2519-d867016.html
   My bibliography  Save this article

A Two-Stage Model with an Improved Clustering Algorithm for a Distribution Center Location Problem under Uncertainty

Author

Listed:
  • Jun Wu

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

  • Xin Liu

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

  • Yuanyuan Li

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

  • Liping Yang

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

  • Wenyan Yuan

    (School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China)

  • Yile Ba

    (School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China)

Abstract

Distribution centers are quite important for logistics. In order to save costs, reduce energy consumption and deal with increasingly uncertain demand, it is necessary for distribution centers to select the location strategically. In this paper, a two-stage model based on an improved clustering algorithm and the center-of-gravity method is proposed to deal with the multi-facility location problem arising from a real-world case. First, a distance function used in clustering is redefined to include both the spatial indicator and the socio-economic indicator. Then, an improved clustering algorithm is used to determine the optimal number of distribution centers needed and the coverage of each center. Third, the center-of-gravity method is used to determine the final location of each center. Finally, the improved method is compared with the traditional clustering method by testing data from 12 cities in Inner Mongolia Autonomous Region in China. The comparison result proves the proposed method’s effectiveness.

Suggested Citation

  • Jun Wu & Xin Liu & Yuanyuan Li & Liping Yang & Wenyan Yuan & Yile Ba, 2022. "A Two-Stage Model with an Improved Clustering Algorithm for a Distribution Center Location Problem under Uncertainty," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2519-:d:867016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2519/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2519/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Li & Dan-dan Xiao & Hong Lei & Ting Zhang & Tian Tian, 2020. "Using Cuckoo Search Algorithm with Q -Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location," Mathematics, MDPI, vol. 8(2), pages 1-32, January.
    2. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    3. Harwin de Vries & Joris van de Klundert & Albert P.M. Wagelmans, 2020. "The Roadside Healthcare Facility Location Problem A Managerial Network Design Challenge," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1165-1187, May.
    4. Huizhen Zhang & Cesar Beltran-Royo & Bo Wang & Ziying Zhang, 2019. "Two-phase semi-Lagrangian relaxation for solving the uncapacitated distribution centers location problem for B2C E-commerce," Computational Optimization and Applications, Springer, vol. 72(3), pages 827-848, April.
    5. Silva, Allyson & Aloise, Daniel & Coelho, Leandro C. & Rocha, Caroline, 2021. "Heuristics for the dynamic facility location problem with modular capacities," European Journal of Operational Research, Elsevier, vol. 290(2), pages 435-452.
    6. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    7. Mohammad Rostami & Morteza Bagherpour, 2020. "A lagrangian relaxation algorithm for facility location of resource-constrained decentralized multi-project scheduling problems," Operational Research, Springer, vol. 20(2), pages 857-897, June.
    8. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2021. "Robust facility location under demand uncertainty and facility disruptions," Omega, Elsevier, vol. 103(C).
    9. Yang, Zhen & Chen, Haoxun & Chu, Feng & Wang, Nengmin, 2019. "An effective hybrid approach to the two-stage capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 275(2), pages 467-480.
    10. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    11. Mohamed Amine Gargouri & Nadia Hamani & Nassim Mrabti & Lyes Kermad, 2021. "Optimization of the Collaborative Hub Location Problem with Metaheuristics," Mathematics, MDPI, vol. 9(21), pages 1-31, October.
    12. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Zhang & Xiaofeng Xu & Jun Wu & Kaijian He, 2023. "Preface to the Special Issue on “Computational and Mathematical Methods in Information Science and Engineering”," Mathematics, MDPI, vol. 11(14), pages 1-4, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xiaohan & Cheng, Chun, 2021. "Locating facilities with resiliency to capacity failures and correlated demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    2. Fadda, Edoardo & Manerba, Daniele & Tadei, Roberto, 2024. "How to locate services optimizing redundancy: A comparative analysis of K-Covering Facility Location models," Socio-Economic Planning Sciences, Elsevier, vol. 94(C).
    3. Abdolreza Roshani & Philip Walker-Davies & Glenn Parry, 2024. "Designing resilient supply chain networks: a systematic literature review of mitigation strategies," Annals of Operations Research, Springer, vol. 341(2), pages 1267-1332, October.
    4. Cheng, Chun & Yu, Qinxiao & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2024. "Distributionally robust facility location with uncertain facility capacity and customer demand," Omega, Elsevier, vol. 122(C).
    5. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    6. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    7. Li, Qingwei & Savachkin, Alex, 2013. "A heuristic approach to the design of fortified distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 138-148.
    8. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    9. Li, Xiaopeng & Ouyang, Yanfeng & Peng, Fan, 2013. "A supporting station model for reliable infrastructure location design under interdependent disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 80-93.
    10. Wang, Zhaodong & Xie, Siyang & Ouyang, Yanfeng, 2022. "Planning reliable service facility location against disruption risks and last-mile congestion in a continuous space," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 123-140.
    11. Zhang, Ying & Snyder, Lawrence V. & Qi, Mingyao & Miao, Lixin, 2016. "A heterogeneous reliable location model with risk pooling under supply disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 151-178.
    12. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    13. Yun, Lifen & Qin, Yong & Fan, Hongqiang & Ji, Changxu & Li, Xiaopeng & Jia, Limin, 2015. "A reliability model for facility location design under imperfect information," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 596-615.
    14. Bhuvnesh Sharma & M. Ramkumar & Nachiappan Subramanian & Bharat Malhotra, 2019. "Dynamic temporary blood facility location-allocation during and post-disaster periods," Annals of Operations Research, Springer, vol. 283(1), pages 705-736, December.
    15. Víctor Blanco & Elena Fernández & Yolanda Hinojosa, 2023. "Hub Location with Protection Under Interhub Link Failures," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 966-985, September.
    16. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    17. Michael K. Lim & Achal Bassamboo & Sunil Chopra & Mark S. Daskin, 2013. "Facility Location Decisions with Random Disruptions and Imperfect Estimation," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 239-249, May.
    18. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    19. O’Hanley, Jesse R. & Scaparra, M. Paola & García, Sergio, 2013. "Probability chains: A general linearization technique for modeling reliability in facility location and related problems," European Journal of Operational Research, Elsevier, vol. 230(1), pages 63-75.
    20. Ahmadi-Javid, Amir & Seddighi, Amir Hossein, 2013. "A location-routing problem with disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 63-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2519-:d:867016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.