IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2684-d1363437.html
   My bibliography  Save this article

Development of a Generic Decision Tree for the Integration of Multi-Criteria Decision-Making (MCDM) and Multi-Objective Optimization (MOO) Methods under Uncertainty to Facilitate Sustainability Assessment: A Methodical Review

Author

Listed:
  • Jannatul Ferdous

    (Interdisciplinary Graduate Studies (IGS)-Sustainability, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada)

  • Farid Bensebaa

    (Energy, Mining and Environment, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada)

  • Abbas S. Milani

    (School of Engineering, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada)

  • Kasun Hewage

    (School of Engineering, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada)

  • Pankaj Bhowmik

    (Aquatic and Crop Resource Development, National Research Council, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada)

  • Nathan Pelletier

    (Faculties of Science (Biology) and Management, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada)

Abstract

The integration of Multi-Objective Optimization (MOO) and Multi-Criteria Decision-Making (MCDM) has gathered significant attention across various scientific research domains to facilitate integrated sustainability assessment. Recently, there has been a growing interest in hybrid approaches that combine MCDM with MOO, aiming to enhance the efficacy of the final decisions. However, a critical gap exists in terms of providing clear methodological guidance, particularly when dealing with data uncertainties. To address this gap, this systematic review is designed to develop a generic decision tree that serves as a practical roadmap for practitioners seeking to perform MOO and MCDM in an integrated fashion, with a specific focus on accounting for uncertainties. The systematic review identified the recent studies that conducted both MOO and MCDM in an integrated way. It is important to note that this review does not aim to identify the superior MOO or MCDM methods, but rather it delves into the strategies for integrating these two common methodologies. The prevalent MOO methods used in the reviewed articles were evolution-based metaheuristic methods. TOPSIS and PROMETHEE II are the prevalent MCDM ranking methods. The integration of MOO and MCDM methods can occur either a priori, a posteriori, or through a combination of both, each offering distinct advantages and drawbacks. The developed decision tree illustrated all three paths and integrated uncertainty considerations in each path. Finally, a real-world case study for the pulse fractionation process in Canada is used as a basis for demonstrating the various pathways presented in the decision tree and their application in identifying the optimized processing pathways for sustainably obtaining pulse protein. This study will help practitioners in different research domains use MOO and MCDM methods in an integrated way to identify the most sustainable and optimized system.

Suggested Citation

  • Jannatul Ferdous & Farid Bensebaa & Abbas S. Milani & Kasun Hewage & Pankaj Bhowmik & Nathan Pelletier, 2024. "Development of a Generic Decision Tree for the Integration of Multi-Criteria Decision-Making (MCDM) and Multi-Objective Optimization (MOO) Methods under Uncertainty to Facilitate Sustainability Assess," Sustainability, MDPI, vol. 16(7), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2684-:d:1363437
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fang, Jianguang & Gao, Yunkai & Sun, Guangyong & Xu, Chengmin & Li, Qing, 2015. "Multiobjective robust design optimization of fatigue life for a truck cab," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 1-8.
    2. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    3. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    4. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ainhoa Gonzalez & Álvaro Enríquez-de-Salamanca, 2018. "Spatial Multi-Criteria Analysis in Environmental Assessment: A Review and Reflection on Benefits and Limitations," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-24, September.
    2. Shuang Yao & Donghua Yu & Yan Song & Hao Yao & Yuzhen Hu & Benhai Guo, 2018. "Dry Bulk Carrier Investment Selection through a Dual Group Decision Fusing Mechanism in the Green Supply Chain," Sustainability, MDPI, vol. 10(12), pages 1-19, November.
    3. Samek, Anya & Hur, Inkyoung & Kim, Sung-Hee & Yi, Ji Soo, 2016. "An experimental study of the decision process with interactive technology," Journal of Economic Behavior & Organization, Elsevier, vol. 130(C), pages 20-32.
    4. David E. Allen & Michael McAleer & Abhay K. Singh, 2016. "A Multi-Criteria Portfolio Analysis of Hedge Fund Strategies," Documentos de Trabajo del ICAE 2017-03, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    5. Junyi Chai & Zhiquan Weng & Wenbin Liu, 2021. "Behavioral Decision Making in Normative and Descriptive Views: A Critical Review of Literature," JRFM, MDPI, vol. 14(10), pages 1-14, October.
    6. Ünsal Özdilek, 2020. "Land and building separation based on Shapley values," Palgrave Communications, Palgrave Macmillan, vol. 6(1), pages 1-13, December.
    7. Guo, Mengzhuo & Zhang, Qingpeng & Liao, Xiuwu & Chen, Frank Youhua & Zeng, Daniel Dajun, 2021. "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega, Elsevier, vol. 101(C).
    8. Dimitris Bertsimas & Allison O'Hair, 2013. "Learning Preferences Under Noise and Loss Aversion: An Optimization Approach," Operations Research, INFORMS, vol. 61(5), pages 1190-1199, October.
    9. Michele Griessmair & Johannes Gettinger, 2020. "Take the Right Turn: The Role of Social Signals and Action–Reaction Sequences in Enacting Turning Points in Negotiations," Group Decision and Negotiation, Springer, vol. 29(3), pages 425-459, June.
    10. Yoichiro Fujii & Hajime Murakami & Yutaka Nakamura & Kazuhisa Takemura, 2023. "Multiattribute regret: theory and experimental study," Theory and Decision, Springer, vol. 95(4), pages 623-662, November.
    11. Marta Sybis & Emilia Konował & Krystyna Prochaska, 2022. "Dextrins as Green and Biodegradable Modifiers of Physicochemical Properties of Cement Composites," Energies, MDPI, vol. 15(11), pages 1-19, June.
    12. M. Bierlaire & M. Thémans & N. Zufferey, 2010. "A Heuristic for Nonlinear Global Optimization," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 59-70, February.
    13. Hu, Qiwei & Chakhar, Salem & Siraj, Sajid & Labib, Ashraf, 2017. "Spare parts classification in industrial manufacturing using the dominance-based rough set approach," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1136-1163.
    14. Olivier Cailloux & Tommi Tervonen & Boris Verhaegen & François Picalausa, 2014. "A data model for algorithmic multiple criteria decision analysis," Annals of Operations Research, Springer, vol. 217(1), pages 77-94, June.
    15. Govindan, Kannan & Jepsen, Martin Brandt, 2016. "ELECTRE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 250(1), pages 1-29.
    16. Yan Xu & Chung-Hsing Yeh, 2017. "Sustainability-based selection decisions for e-waste recycling operations," Annals of Operations Research, Springer, vol. 248(1), pages 531-552, January.
    17. Jerzy Grobelny & Rafal Michalski, 2016. "A concept of a flexible approach to the facilities layout problems in logistics systems," WORking papers in Management Science (WORMS) WORMS/16/11, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    18. Wenshuai Wu & Yi Peng, 2016. "Extension of grey relational analysis for facilitating group consensus to oil spill emergency management," Annals of Operations Research, Springer, vol. 238(1), pages 615-635, March.
    19. Wenshuai Wu & Yi Peng, 2016. "Extension of grey relational analysis for facilitating group consensus to oil spill emergency management," Annals of Operations Research, Springer, vol. 238(1), pages 615-635, March.
    20. Rivier, M. & Congedo, P.M., 2022. "Surrogate-Assisted Bounding-Box approach applied to constrained multi-objective optimisation under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2684-:d:1363437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.