IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v18y2018i3d10.1007_s12351-016-0251-z.html
   My bibliography  Save this article

A new monarch butterfly optimization with an improved crossover operator

Author

Listed:
  • Gai-Ge Wang

    (Jiangsu Normal University
    University of Alberta
    Northeast Normal University
    Northeast Normal University)

  • Suash Deb

    (IT & Educational Consultant)

  • Xinchao Zhao

    (Beijing University of Posts and Telecommunications)

  • Zhihua Cui

    (Taiyuan University of Science and Technology)

Abstract

Recently, by examining and simulating the migration behavior of monarch butterflies in nature, Wang et al. proposed a new swarm intelligence-based metaheuristic algorithm, called monarch butterfly optimization (MBO), for addressing various global optimization tasks. The effectiveness of MBO was verified by benchmark evaluation on an array of unimodal and multimodal test functions in comparison with the five state-of-the-art metaheuristic algorithms on most benchmarks. However, MBO failed to come up with satisfactory performance (Std values and mean fitness) on some benchmarks. In order to overcome this, a new version of MBO algorithm, incorporating crossover operator is presented in this paper. A variant of the original MBO, the proposed one is essentially a self-adaptive crossover (SAC) operator. A kind of greedy strategy is also utilized. It ensures that only the better monarch butterfly individuals, satisfying a certain criterion, are allowed to pass to the next generation, instead of all the updated monarch butterfly individuals, as was done in the basic MBO. In other words, the proposed methodology is essentially a new version of the original MBO, supplemented with Greedy strategy and self-adaptive Crossover operator (GCMBO). In GCMBO, the SAC operator can significantly improve the diversity of population during the later run phase of the search. In butterfly adjusting operator, the greedy strategy is used to select only those monarch butterfly individuals, possessing improved fitness and hence can aid towards accelerating convergence. Finally, the proposed GCMBO method is benchmarked by twenty-five standard unimodal and multimodal test functions. The results clearly demonstrate the capability of GCMBO in significantly outperforming the basic MBO method for almost all the test cases. The MATLAB code used in the paper can be found in the website: http://www.mathworks.com/matlabcentral/fileexchange/55339-gcmbo .

Suggested Citation

  • Gai-Ge Wang & Suash Deb & Xinchao Zhao & Zhihua Cui, 2018. "A new monarch butterfly optimization with an improved crossover operator," Operational Research, Springer, vol. 18(3), pages 731-755, October.
  • Handle: RePEc:spr:operea:v:18:y:2018:i:3:d:10.1007_s12351-016-0251-z
    DOI: 10.1007/s12351-016-0251-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-016-0251-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-016-0251-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Chengcheng & Wang, Xianchang & Yu, Helong & Wang, Mingjing & Chen, Huiling, 2021. "Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 291-318.
    2. Nebojsa Bacanin & Timea Bezdan & Eva Tuba & Ivana Strumberger & Milan Tuba, 2020. "Monarch Butterfly Optimization Based Convolutional Neural Network Design," Mathematics, MDPI, vol. 8(6), pages 1-33, June.
    3. Minhee Kim & Junjae Chae, 2019. "Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path," Mathematics, MDPI, vol. 7(2), pages 1-21, February.
    4. Gui Li & Gai-Ge Wang & Shan Wang, 2021. "Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy for Many-Objective Optimization," Mathematics, MDPI, vol. 9(4), pages 1-34, February.
    5. Juan Li & Dan-dan Xiao & Hong Lei & Ting Zhang & Tian Tian, 2020. "Using Cuckoo Search Algorithm with Q -Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location," Mathematics, MDPI, vol. 8(2), pages 1-32, January.
    6. Cheng-Long Wei & Gai-Ge Wang, 2020. "Hybrid Annealing Krill Herd and Quantum-Behaved Particle Swarm Optimization," Mathematics, MDPI, vol. 8(9), pages 1-23, August.
    7. Jiang Li & Lihong Guo & Yan Li & Chang Liu, 2019. "Enhancing Elephant Herding Optimization with Novel Individual Updating Strategies for Large-Scale Optimization Problems," Mathematics, MDPI, vol. 7(5), pages 1-35, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:18:y:2018:i:3:d:10.1007_s12351-016-0251-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.