IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v141y2017icp96-109.html
   My bibliography  Save this article

Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms

Author

Listed:
  • Sergeyev, Yaroslav D.
  • Kvasov, Dmitri E.
  • Mukhametzhanov, Marat S.

Abstract

Univariate continuous global optimization problems are considered in this paper. Several widely used multidimensional metaheuristic global optimization methods–genetic algorithm, differential evolution, particle swarm optimization, artificial bee colony algorithm, and firefly algorithm–are adapted to the univariate case and compared with three Lipschitz global optimization algorithms. For this purpose, it has been introduced a methodology allowing one to compare stochastic methods with deterministic ones by using operational characteristics originally proposed for working with deterministic algorithms only. As a result, a visual comparison of methods having different nature on classes of randomly generated test functions becomes possible. A detailed description of the new methodology for comparing, called “operational zones”, is given and results of wide numerical experiments with five metaheuristics and three Lipschitz algorithms are reported.

Suggested Citation

  • Sergeyev, Yaroslav D. & Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2017. "Operational zones for comparing metaheuristic and deterministic one-dimensional global optimization algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 141(C), pages 96-109.
  • Handle: RePEc:eee:matcom:v:141:y:2017:i:c:p:96-109
    DOI: 10.1016/j.matcom.2016.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475416300830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2016.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan Gillard & Anatoly Zhigljavsky, 2013. "Optimization challenges in the structured low rank approximation problem," Journal of Global Optimization, Springer, vol. 57(3), pages 733-751, November.
    2. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    3. Antanas Žilinskas, 2010. "On similarities between two models of global optimization: statistical models and radial basis functions," Journal of Global Optimization, Springer, vol. 48(1), pages 173-182, September.
    4. James M. Calvin & Yvonne Chen & Antanas Žilinskas, 2012. "An Adaptive Univariate Global Optimization Algorithm and Its Convergence Rate for Twice Continuously Differentiable Functions," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 628-636, November.
    5. Yaroslav D. Sergeyev & Marat S. Mukhametzhanov & Dmitri E. Kvasov & Daniela Lera, 2016. "Derivative-Free Local Tuning and Local Improvement Techniques Embedded in the Univariate Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 186-208, October.
    6. Anatoly Zhigljavsky & Antanas Žilinskas, 2008. "Stochastic Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-74740-8, June.
    7. Hamacher, Kay, 2005. "On stochastic global optimization of one-dimensional functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 547-557.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Wang & Kunzhao Wang & Gaige Wang, 2022. "Neural Network Algorithm with Dropout Using Elite Selection," Mathematics, MDPI, vol. 10(11), pages 1-17, May.
    2. Juan Li & Dan-dan Xiao & Hong Lei & Ting Zhang & Tian Tian, 2020. "Using Cuckoo Search Algorithm with Q -Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location," Mathematics, MDPI, vol. 8(2), pages 1-32, January.
    3. Wenyu Wang & Taimoor Akhtar & Christine A. Shoemaker, 2022. "Integrating $$\varepsilon $$ ε -dominance and RBF surrogate optimization for solving computationally expensive many-objective optimization problems," Journal of Global Optimization, Springer, vol. 82(4), pages 965-992, April.
    4. Jean Bigeon & Sébastien Le Digabel & Ludovic Salomon, 2021. "DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 301-338, June.
    5. Blondin, M.J. & Sicard, P. & Pardalos, P.M., 2019. "Controller Tuning Approach with robustness, stability and dynamic criteria for the original AVR System," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 168-182.
    6. Ziadi, Raouf & Bencherif-Madani, Abdelatif & Ellaia, Rachid, 2020. "A deterministic method for continuous global optimization using a dense curve," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 62-91.
    7. R. Cavoretto & A. Rossi & M. S. Mukhametzhanov & Ya. D. Sergeyev, 2021. "On the search of the shape parameter in radial basis functions using univariate global optimization methods," Journal of Global Optimization, Springer, vol. 79(2), pages 305-327, February.
    8. Babayan, Narek & Tahani, Mojtaba, 2019. "Team Arrangement Heuristic Algorithm (TAHA): Theory and application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 155-176.
    9. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaroslav D. Sergeyev & Marat S. Mukhametzhanov & Dmitri E. Kvasov & Daniela Lera, 2016. "Derivative-Free Local Tuning and Local Improvement Techniques Embedded in the Univariate Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 186-208, October.
    2. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    3. Albertas Gimbutas & Antanas Žilinskas, 2018. "An algorithm of simplicial Lipschitz optimization with the bi-criteria selection of simplices for the bi-section," Journal of Global Optimization, Springer, vol. 71(1), pages 115-127, May.
    4. Daniela Lera & Yaroslav D. Sergeyev, 2018. "GOSH: derivative-free global optimization using multi-dimensional space-filling curves," Journal of Global Optimization, Springer, vol. 71(1), pages 193-211, May.
    5. Grishagin, Vladimir & Israfilov, Ruslan & Sergeyev, Yaroslav, 2018. "Convergence conditions and numerical comparison of global optimization methods based on dimensionality reduction schemes," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 270-280.
    6. R. Cavoretto & A. Rossi & M. S. Mukhametzhanov & Ya. D. Sergeyev, 2021. "On the search of the shape parameter in radial basis functions using univariate global optimization methods," Journal of Global Optimization, Springer, vol. 79(2), pages 305-327, February.
    7. Lera, Daniela & Posypkin, Mikhail & Sergeyev, Yaroslav D., 2021. "Space-filling curves for numerical approximation and visualization of solutions to systems of nonlinear inequalities with applications in robotics," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    8. Nazih-Eddine Belkacem & Lakhdar Chiter & Mohammed Louaked, 2024. "A Novel Approach to Enhance DIRECT -Type Algorithms for Hyper-Rectangle Identification," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    9. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    10. James Calvin & Gražina Gimbutienė & William O. Phillips & Antanas Žilinskas, 2018. "On convergence rate of a rectangular partition based global optimization algorithm," Journal of Global Optimization, Springer, vol. 71(1), pages 165-191, May.
    11. James M. Calvin & Antanas Žilinskas, 2014. "On a Global Optimization Algorithm for Bivariate Smooth Functions," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 528-547, November.
    12. Andrey Pepelyshev & Anatoly Zhigljavsky & Antanas Žilinskas, 2018. "Performance of global random search algorithms for large dimensions," Journal of Global Optimization, Springer, vol. 71(1), pages 57-71, May.
    13. Vasiliy V. Grigoriev & Petr N. Vabishchevich, 2021. "Bayesian Estimation of Adsorption and Desorption Parameters for Pore Scale Transport," Mathematics, MDPI, vol. 9(16), pages 1-16, August.
    14. Zhigljavsky, Anatoly & Golyandina, Nina & Gryaznov, Svyatoslav, 2016. "Deconvolution of a discrete uniform distribution," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 37-44.
    15. Jonathan Gillard & Anatoly Zhigljavsky, 2013. "Optimization challenges in the structured low rank approximation problem," Journal of Global Optimization, Springer, vol. 57(3), pages 733-751, November.
    16. Jin, Zhong & Y. Gao, David, 2017. "On modeling and global solutions for d.c. optimization problems by canonical duality theory," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 168-181.
    17. Hai-Bang Ly & Tien-Thinh Le & Huong-Lan Thi Vu & Van Quan Tran & Lu Minh Le & Binh Thai Pham, 2020. "Computational Hybrid Machine Learning Based Prediction of Shear Capacity for Steel Fiber Reinforced Concrete Beams," Sustainability, MDPI, vol. 12(7), pages 1-34, March.
    18. Rudolf Scitovski, 2017. "A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set," Journal of Global Optimization, Springer, vol. 68(4), pages 713-727, August.
    19. Qunfeng Liu & Jinping Zeng & Gang Yang, 2015. "MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems," Journal of Global Optimization, Springer, vol. 62(2), pages 205-227, June.
    20. Rudolf Scitovski & Kristian Sabo, 2019. "Application of the DIRECT algorithm to searching for an optimal k-partition of the set $$\mathcal {A}\subset \mathbb {R}^n$$ A ⊂ R n and its application to the multiple circle detection problem," Journal of Global Optimization, Springer, vol. 74(1), pages 63-77, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:141:y:2017:i:c:p:96-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.